
Solutions for the Storage Problem of McEliece
Public and Private Keys on Memory-constrained

Platforms

Falko Strenzke

FlexSecure GmbH, Darmstadt, Germany
strenzke@flexsecure.de

January 18, 2013

Solutions for the McEliece Key Storage Problem Falko Strenzke 1 / 28

strenzke@flexsecure.de


Introduction

code-based cryptosystem built on error correcting codes

McEliece, Niederreiter

advantage: no efficient quantum algorithm known

disadvantage: key sizes

attempts to reduce public key size with “structured” codes

original proposition of McEliece with Goppa Codes:
unbroken for more than 30 years

Solutions for the McEliece Key Storage Problem Falko Strenzke 2 / 28



1 Introduction

2 Preliminaries

3 On-line Public Operation

4 Decryption without the Parity Check Matrix

Solutions for the McEliece Key Storage Problem Falko Strenzke 3 / 28



1 Introduction

2 Preliminaries

3 On-line Public Operation

4 Decryption without the Parity Check Matrix

Solutions for the McEliece Key Storage Problem Falko Strenzke 4 / 28



Goppa Codes

Parameters of a Goppa Code

irreducible polynomial g(Y ) ∈ F2m [Y ] of degree t (the Goppa
Polynomial)
support Γ = (α0, α1, . . . , αn−1), where αi are pairwise distinct
elements of F2m

Properties of the Code

the code has length n ≤ 2m (code word length) ,
dimension k = n −mt (message length) and
can correct up to t errors.
a parity check matrix H ∈ Fmt×n

2 , where cH> = 0 if c ∈ C
a generator matrix G ∈ Fn×k

2 with ~mG ∈ C
example for secure parameters: n = 2048, t = 50 for 102 bit
security

Solutions for the McEliece Key Storage Problem Falko Strenzke 5 / 28



The McEliece PKC

key generation

choose the parameters n and t
generate randomly g(Y ) and Γ (determining the secret the
code)
for this private code Cs one has a public generator matrix Gs

the public key is Gp = [I|G ′p] = TGs

for 102 bit secure parameters: G ′p has size of about 100 KB

encryption: ~z = ~mGp + ~e, wt (~e) = t

decryption: knowing g(Y ) and Γ, ~e and thus also ~m can be
recovered

Solutions for the McEliece Key Storage Problem Falko Strenzke 6 / 28



1 Introduction

2 Preliminaries

3 On-line Public Operation

4 Decryption without the Parity Check Matrix

Solutions for the McEliece Key Storage Problem Falko Strenzke 7 / 28



Public Key Encryption

McEliece is a public key encryption scheme

i.e., applied in a Public Key Infrastructure (PKI) context

Solutions for the McEliece Key Storage Problem Falko Strenzke 8 / 28



Encrpytion in PKI

TBS data beg.

Matrix
(Public Key)
100 KByte

TBS end

signature

CA
(trust anchor)

X509-Cert.
TBS Data

standard approach: transmitt the certificate, verify signature,
encrypt with public key

Solutions for the McEliece Key Storage Problem Falko Strenzke 9 / 28



Problems on Memory-constrained Platforms

smart cards typically have less than 20 kB RAM

→ certificate/matrix in non-volatile memory

→ cost, slow writing speed, limited nr. write cylces

why encryption on smart card?

→ in the context of electronic passports (Germany) and
electronic health applications:

key exchange schemes, can be built by signature schemes and
PKCs

Solutions for the McEliece Key Storage Problem Falko Strenzke 10 / 28



Solution for Memory-constrained Platforms

Process the certificate during receival:

fail –
output
error

success – finalize
& output

sign.
ok?

TBS data beg.

Matrix
(Public Key)
100 KByte

TBS end

signature Hash
value

online-
mul.

~mG

~m

...

Solutions for the McEliece Key Storage Problem Falko Strenzke 11 / 28



Transmission Rates

contactless smart card: up to 106 KByte/s (raw)

transmit 100 KByte key (security ≈ 100 bit) in ≈1s

research implementation by NXP Semiconductors 8 times
faster

→ leaves 35 CPU cycles at 30MHz per byte

Solutions for the McEliece Key Storage Problem Falko Strenzke 12 / 28



Computational Tasks

SHA-256 Hash ≈ 30 cycles/byte on Pentium 4

matrix multiplication column-wise:

AND of each column and ~m 32-bit word-wise
XOR result to 32-bit ACCU
finalize column: compute parity bit of ACCU

Solutions for the McEliece Key Storage Problem Falko Strenzke 13 / 28



Example Implementation

on Atmel AVR32 ATUC3A1512 32-bit microcontroller @ 33
MHz

communicating with PC over RS232 @ 460,800 baud

works with two interchanging buffers

Solutions for the McEliece Key Storage Problem Falko Strenzke 14 / 28



Online-Multiplication Protocol

Figure: Schematic overview of the interrupt based implementation of the
on-line multiplication.

Solutions for the McEliece Key Storage Problem Falko Strenzke 15 / 28



Two Modifications to the Protocol

non-interactive version

only the very first ACK is send
→ faster by ≈ 1.3

simulation of higher transmission speeds

use fake matrix with bytes repeating r times
i.e. 0x1D, 0x1D, 0x1D, 0x1D, 0xA3, 0xA3, 0xA3,

0xA3, 0x22, ...

transmit repeated bytes only once
Bsim = rBreal

Solutions for the McEliece Key Storage Problem Falko Strenzke 16 / 28



Results

based on computa-
tion throughput

experimental
result - w/o ACK

cycles/byte measured: 55.6 for
SHA-256, 4.2 for
mult. yields: 59.8

92

time at 33MHz
CPU for 100,000
Bytes

181ms 279ms

transmission rate
in bytes/s

551,839 Bsim = 368, 640
(r = 8)

buffer size: 1536

Solutions for the McEliece Key Storage Problem Falko Strenzke 17 / 28



Applicability

applicable basically all code-based schemes

McEliece PKC
Niederreiter PKC
CFS signature scheme
KKS signature scheme

Solutions for the McEliece Key Storage Problem Falko Strenzke 18 / 28



1 Introduction

2 Preliminaries

3 On-line Public Operation

4 Decryption without the Parity Check Matrix

Solutions for the McEliece Key Storage Problem Falko Strenzke 19 / 28



Syndrome Computation with the Parity Check Matrix

S(Y ) ∈ F2m [Y ] of degree t − 1: starting point of decryption

~s = cHT

interpret ~s ∈ Fmt
2 as coefficients . . .

→ S(Y )

Solutions for the McEliece Key Storage Problem Falko Strenzke 20 / 28



McEliece Private Key Size

size in bytes

n = 2048, t =
50, (102 bit)

n = 2960, t =
56 (> 122 bit)

4 · 2m bytes F2m tables 8,192 16,384

t2 bytes table for square
root in F2m [Y ]/g(Y )

2,500 3,136

2t bytes for g(Y ) 100 112
2n bytes for the sup-
port

4,048 5,920

sum w/o Par. Ch. Mat. 14,840 25,552

Par. Ch. Mat. 140,800 248,640

sum w/Par. Ch. Mat. 155,640 274,192

Solutions for the McEliece Key Storage Problem Falko Strenzke 21 / 28



Syndrome Computation without the Parity Check Matrix

S(Y ) ≡
∑n

i=1
ci

Y⊕αi
mod g(Y ),

where αi is the i-th support element

done with EEA in a single iteration

EEA implementation can be optimized for this case

Solutions for the McEliece Key Storage Problem Falko Strenzke 22 / 28



Optimized EEA

Require: the ciphertext ~c ∈ Fn
2, and the Goppa Polynomial

g(Y ) ∈ F2m [Y ] of degree t
Ensure: the syndrome polynomial S(Y ) ∈ F2m [Y ] of degree ≤ t − 1
S(Y )← 0
for i ← 0 up to n − 1 do

if ~c[i ] = 1 then
B(Y )← 0
b ← gt
for j ← t − 1 down to 0 do

Bj ← b
b ← b · αi ⊕ gj

end for
f ← b−1

for j ← 0 up to deg (B(Y )) do
Sj ← Sj ⊕ f · Bj

end for
end if

end for

Solutions for the McEliece Key Storage Problem Falko Strenzke 23 / 28



Cost of the Syndrome Computation

Csyndr = nt(Cmult + Cadd) + n
2Cinv

an average

except for the inversions: cost of root-finding with exhaustive
search

Solutions for the McEliece Key Storage Problem Falko Strenzke 24 / 28



Implementation

platform: Atmel AT32 AP7000

source code: HyMES Open Source McEliece C
implementation https://www.rocq.inria.fr/secret/

CBCrypto/index.php?pg=hymes

Solutions for the McEliece Key Storage Problem Falko Strenzke 25 / 28

https://www.rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes
https://www.rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes


Experimental Results

code pa-
rameters

n = 2048, t = 50 n = 2960, t = 56

security
level

102 bit > 122 bit

cycles t @ 33
MHz

cycles t @ 33
MHz

with par.
ch. mat.

whole decr. 2.00 · 106 61 ms 3.12 · 106 95 ms
only syndr.
comp.

0.26 · 106 8 ms 0.39 · 106 12 ms

private key
bytes

155,640 274,192

w/o par.
ch. mat.

whole decr. 4.42 · 106 134 ms 7.39 · 106 224 ms
only synd.
comp.

2.65 · 106 80 ms 4, 71 · 106 143 ms

private key
bytes

14,840 25,552

Solutions for the McEliece Key Storage Problem Falko Strenzke 26 / 28



Conclusion

code-based public operations in a PKI context: transmission
speed is the limiting factor

applicability in certain scenarios seems possible even today

syndrome computation without the parity check matrix is still
efficient

→ advantage of McEliece over Niederreiter

Solutions for the McEliece Key Storage Problem Falko Strenzke 27 / 28



Thank you!

download the McEliece implementation and these slides:
http://crypto-source.de

Solutions for the McEliece Key Storage Problem Falko Strenzke 28 / 28

http://crypto-source.de

	Introduction
	Preliminaries
	On-line Public Operation
	Decryption without the Parity Check Matrix

