Solutions for the Storage Problem of McEliece Public and Private Keys on Memory-constrained Platforms

Falko Strenzke

FlexSecure GmbH, Darmstadt, Germany strenzke@flexsecure.de

January 18, 2013

Solutions for the McEliece Key Storage Problem

Falko Strenzke 1 / 28

ヘロア 人間ア 人間ア 人間ア

FlexSecure

KOBIL[®]

- code-based cryptosystem built on error correcting codes
- McEliece, Niederreiter
- advantage: no efficient quantum algorithm known
- disadvantage: key sizes
- attempts to reduce public key size with "structured" codes
- **original** proposition of McEliece with Goppa Codes: **unbroken** for more than **30 years**

イロト イポト イヨト イヨト

FlexSecure

KOBIL

2 Preliminaries

③ On-line Public Operation

④ Decryption without the Parity Check Matrix

Falko Strenzke 3 / 28

・ロト ・ 四ト ・ ヨト ・ ヨト

1 Introduction

3 On-line Public Operation

Decryption without the Parity Check Matrix

Solutions for the McEliece Key Storage Problem

Falko Strenzke 4 / 28

・ロト ・ 四ト ・ ヨト ・ ヨト

FlexSecure

Goppa Codes

• Parameters of a Goppa Code

- irreducible polynomial $g(Y) \in \mathbb{F}_{2^m}[Y]$ of degree t (the Goppa Polynomial)
- support $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$, where α_i are pairwise distinct elements of \mathbb{F}_{2^m}
- Properties of the Code
 - $\circ\,$ the code has length $n\leq 2^m$ (code word length) ,
 - dimension k = n mt (message length) and
 - can correct up to t errors.
 - a parity check matrix $H \in \mathbb{F}_2^{mt imes n}$, where $cH^{ op} = 0$ if $c \in \mathcal{C}$
 - a generator matrix $G \in \mathbb{F}_2^{n \times \hat{k}}$ with $\vec{m}G \in C$
 - example for secure parameters: n = 2048, t = 50 for 102 bit security

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

FlexSecure

KOBIL[®]

The McEliece PKC

- key generation
 - choose the parameters n and t
 - generate randomly g(Y) and Γ (determining the secret the code)
 - $\,\circ\,$ for this private code \mathcal{C}_s one has a public generator matrix ${\it G}_s$
 - the public key is $G_p = [\mathbb{I}|G'_p] = TG_s$
 - for 102 bit secure parameters: G'_p has size of about 100 KB
- encryption: $\vec{z} = \vec{m}G_p + \vec{e}$, wt $(\vec{e}) = t$
- decryption: knowing g(Y) and Γ , \vec{e} and thus also \vec{m} can be recovered

・ロト ・ 四ト ・ ヨト ・ ヨト

FlexSecure

KOBIL[®] Group

Decryption without the Parity Check Matrix

Solutions for the McEliece Key Storage Problem

Falko Strenzke 7 / 28

・ロト ・ 四ト ・ ヨト ・ ヨト

- McEliece is a public key encryption scheme
- i.e., applied in a Public Key Infrastructure (PKI) context

Falko Strenzke 8 / 28

イロト イロト イヨト イヨト

FlexSecure

KOBIL Group

Encrpytion in PKI

standard approach: transmitt the certificate, verify signature, encrypt with public key

Solutions for the McEliece Key Storage Problem

Falko Strenzke 9 / 28

FlexSecure

KOBIL

- ${\scriptstyle \circ}$ smart cards typically have less than 20 kB RAM
- $\bullet \ \to {\sf certificate}/{\sf matrix} \ {\sf in} \ {\sf non-volatile} \ {\sf memory}$
- ${\scriptstyle \bullet} \rightarrow$ cost, slow writing speed, limited nr. write cylces
- why encryption on smart card?
- $\bullet \to$ in the context of electronic passports (Germany) and electronic health applications:
- key exchange schemes, can be built by signature schemes and PKCs

Falko Strenzke

FlexSecure

10 / 28

KOBIL Group

Solution for Memory-constrained Platforms

Process the certificate during receival:

- contactless smart card: up to 106 KByte/s (raw)
- ${\scriptstyle \circ}$ transmit 100 KByte key (security ${\scriptstyle \approx}$ 100 bit) in ${\scriptstyle \approx}$ 1s
- research implementation by NXP Semiconductors 8 times faster

Falko Strenzke

イロト イロト イヨト イヨト

FlexSecure

12 / 28

 ${\scriptstyle \bullet}$ \rightarrow leaves 35 CPU cycles at 30MHz per byte

- SHA-256 Hash \approx 30 cycles/byte on Pentium 4
- matrix multiplication column-wise:
 - AND of each column and \vec{m} 32-bit word-wise
 - XOR result to 32-bit ACCU
 - finalize column: compute parity bit of ACCU

Falko Strenzke 13 / 28

イロト イロト イヨト イヨト

FlexSecure

KOBIL[®]

- on Atmel AVR32 ATUC3A1512 32-bit microcontroller @ 33 MHz
- communicating with PC over RS232 @ 460,800 baud
- works with two interchanging buffers

Solutions for the McEliece Key Storage Problem

Falko Strenzke 14 / 28

イロト イロト イヨト イヨト

FlexSecure

KOBIL[®]

Online-Multiplication Protocol

Figure: Schematic overview of the interrupt based implementation of the on-line multiplication.

Solutions for the McEliece Key Storage Problem

Falko Strenzke 15 / 28

KOBIL

FlexSecure

Two Modifications to the Protocol

non-interactive version

- only the very first ACK is send
- ${}_{\circ}~\rightarrow$ faster by ≈ 1.3

• simulation of higher transmission speeds

- use fake matrix with bytes repeating r times
- i.e. 0x1D, 0x1D, 0x1D, 0x1D, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0x22, ...

Falko Strenzke

イロト イポト イヨト イヨト

FlexSecure

16 / 28

KOBIL Group

- transmit repeated bytes only once
- $\circ \ B_{\rm sim} = r B_{\rm real}$

Solutions for the McEliece Key Storage Problem

	based on computa- tion throughput	sed on computa- n throughput result - w/o ACK		
cycles/byte	measured: 55.6 for SHA-256, 4.2 for mult. yields: 59.8	92		
time at 33MHz CPU for 100,000 Bytes	181ms	279ms		
transmission rate in bytes/s	551,839	$B_{\rm sim} = 368,640$ (r = 8)		

FlexSecure

Falko Strenzke 17 / 28

KOBIL

• buffer size: 1536

Solutions for the McEliece Key Storage Problem

- applicable basically all code-based schemes
 - McEliece PKC
 - Niederreiter PKC
 - CFS signature scheme
 - KKS signature scheme

Solutions for the McEliece Key Storage Problem

Falko Strenzke 18 / 28

イロト イロト イヨト イヨト

FlexSecure

1 Introduction

2 Preliminaries

3 On-line Public Operation

4 Decryption without the Parity Check Matrix

Solutions for the McEliece Key Storage Problem

Falko Strenzke 19 / 28

・ロト ・ 四ト ・ ヨト ・ ヨト

FlexSecure

Syndrome Computation with the Parity Check Matrix

- $S(Y) \in \mathbb{F}_{2^m}[Y]$ of degree t 1: starting point of decryption • $\vec{s} = cH^T$
- interpret $ec{s} \in \mathbb{F}_2^{mt}$ as coefficients . . .
- $\circ \rightarrow S(Y)$

Solutions for the McEliece Key Storage Problem

Falko Strenzke 20 / 28

・ロト ・ 四ト ・ ヨト ・ ヨト

FlexSecure

KOBIL Group

McEliece Private Key Size

	size in bytes		
	n = 2048, t =	n = 2960, t =	
	50, (102 bit)	56 (> 122 bit)	
$4 \cdot 2^m$ bytes \mathbb{F}_{2^m} tables	8,192	16,384	
t^2 bytes table for square	2,500	3,136	
root in $\mathbb{F}_{2^m}[Y]/g(Y)$			
2t bytes for $g(Y)$	100	112	
2n bytes for the sup-	4,048	5,920	
port			
sum w/o Par. Ch. Mat.	14,840	25,552	
Par. Ch. Mat.	140,800	248,640	
sum w/Par. Ch. Mat.	155,640	274,192	

Solutions for the McEliece Key Storage Problem

Falko Strenzke 21 / 28

ヘロト ヘロト ヘヨト ヘヨト

Ξ

KOBIL[®]

Q.

FlexSecure

Syndrome Computation without the Parity Check Matrix

- $S(Y) \equiv \sum_{i=1}^{n} \frac{c_i}{Y \oplus \alpha_i} \mod g(Y)$,
- where α_i is the *i*-th support element
- done with EEA in a single iteration
- EEA implementation can be optimized for this case

Solutions for the McEliece Key Storage Problem

Falko Strenzke 22 / 28

◆ロト ◆聞ト ◆国ト ◆国ト

FlexSecure

KOBIL

Optimized EEA

Require: the ciphertext $\vec{c} \in \mathbb{F}_2^n$, and the Goppa Polynomial $g(Y) \in \mathbb{F}_{2^m}[Y]$ of degree t **Ensure:** the syndrome polynomial $S(Y) \in \mathbb{F}_{2^m}[Y]$ of degree $\leq t - 1$ $S(Y) \leftarrow 0$ **for** $i \leftarrow 0$ up to n - 1 **do** if $\vec{c}[i] = 1$ then $B(Y) \leftarrow 0$ $b \leftarrow g_t$ **for** $i \leftarrow t - 1$ down to 0 **do** $B_i \leftarrow b$ $b \leftarrow b \cdot \alpha_i \oplus g_i$ end for $f \leftarrow b^{-1}$ for $i \leftarrow 0$ up to deg (B(Y)) do $S_i \leftarrow S_i \oplus f \cdot B_i$ end for end if end for ・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト = nan

Falko Strenzke 23 / 28

KOBIL[®] Group

FlexSecure

•
$$C_{\text{syndr}} = nt(C_{\text{mult}} + C_{\text{add}}) + \frac{n}{2}C_{\text{inv}}$$

- an average
- except for the inversions: cost of root-finding with exhaustive search

Falko Strenzke 24 / 28

<ロト <回ト < 回ト < 回ト

- platform: Atmel AT32 AP7000
- source code: HyMES Open Source McEliece C implementation https://www.rocq.inria.fr/secret/ CBCrypto/index.php?pg=hymes

Falko Strenzke 25 / 28

イロト イポト イヨト イヨト

FlexSecure

KOBIL[®]

Experimental Results

code pa-		n = 2048, t = 50		n = 2960, t = 56	
rameters					
security		102 bit		> 122 bit	
level					
		cycles	t @ 33 MHz	cycles	t @ 33 MHz
with nor	whole decr.	$2.00 \cdot 10^{6}$	61 ms	$3.12 \cdot 10^{6}$	95 ms
ch. mat.	only syndr. comp.	$0.26 \cdot 10^{6}$	8 ms	$0.39 \cdot 10^{6}$	12 ms
	private key bytes	155,640		274,192	
	whole decr.	$4.42 \cdot 10^{6}$	134 ms	$7.39 \cdot 10^6$	224 ms
ch. mat.	only synd. comp.	$2.65 \cdot 10^{6}$	80 ms	$4,71 \cdot 10^{6}$	143 ms
	private key bytes	14,840		25,552	

Solutions for the McEliece Key Storage Problem

Falko Strenzke 26 / 28

FlexSecure

Ξ

KOBIL

9

- code-based public operations in a PKI context: transmission speed is the limiting factor
- applicability in certain scenarios seems possible even today
- syndrome computation without the parity check matrix is still efficient

Falko Strenzke

イロト イロト イヨト イヨト

FlexSecure

27 / 28

KOBIL[®] Group

 ${\scriptstyle \bullet} \rightarrow {\rm advantage} \text{ of McEliece over Niederreiter}$

Thank you!

download the McEliece implementation and these slides: http://crypto-source.de

Solutions for the McEliece Key Storage Problem

Falko Strenzke 28 / 28

・ロト ・ 四ト ・ ヨト ・ ヨト