Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

Cryptography and Computeralgebra, Department of Computer Science, Technische Universität Darmstadt, Germany, fstrenzke@crypto-source.de

April 13, 2015

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

3

- Code-based Cryptography employs error corrections codes
- its security is based on the syndrome decoding problem
- secure in the presence of quantum computers
- Code-based Cryptosystems: McEliece and Niederreiter
- both use the Patterson Algorithm in decryption
- root-finding of polynomial over \mathbb{F}_{2^m}

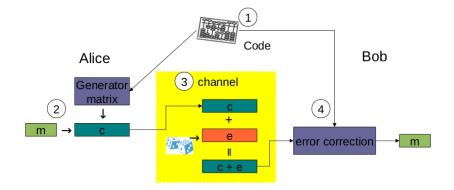
= nar

イロト イポト イヨト イヨト

- 2 Preliminaries
- 3 Previous Work
- 4 Variants of Root-finding
- 5 Side Channel Security Aspects of Root Finding
 - Message-aimed Attacks
 - Key-aimed Attacks
- 6 Performance

3

2 Preliminaries


- 3 Previous Work
- 4 Variants of Root-finding
- 5 Side Channel Security Aspects of Root Finding

 Message-aimed Attacks
 Key-aimed Attacks
- 6 Performance

7 Conclusion

 \equiv

Error Correcting Codes

Fast and Secure Root Finding for Code-based Cryptosystems

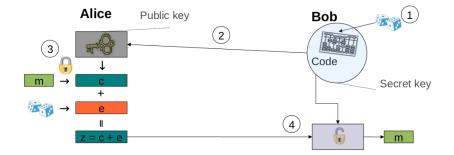
Falko Strenzke

5 / 38

Ξ

ヘロト 人間 ト 人造 ト 人造 ト

• Parameters of a Goppa Code


- irreducible polynomial $g(Y) \in \mathbb{F}_{2^m}[Y]$ of degree t (the Goppa Polynomial)
- support $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$, where α_i are pairwise distinct elements of \mathbb{F}_{2^m}
- Properties of the Code
 - the code has length $n \leq 2^m$ (code word length),
 - dimension k = n mt (message length) and
 - can correct up to t errors.
 - a parity check matrix H, where $cH^{\top} = 0$ if $c \in C$
 - example for secure parameters: *n* = 2048, *t* = 50 for 100 bit security

The McEliece PKC

- key generation
 - $\circ~$ choose the parameters $n~{\rm and}~t$
 - generate randomly g(Y) and Γ (determining the secret the code)
 - $\circ\,$ for this private code \mathcal{C}_s one has a private generator matrix G_s
 - $\circ\,$ the public key is $\mathit{G}_{p}=[\mathbb{I}|\mathit{G}_{p}']=\mathit{T}\mathit{G}_{s}$
- encryption: $\vec{z} = \vec{m}G_p + \vec{e}$, wt $(\vec{e}) = t$
- decryption: knowing g(Y) and Γ , \vec{e} and thus also \vec{m} can be recovered

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The McEliece PKC

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

Ξ

Syndrome Decoding

• secret key:
$$g(Y)$$
, $\Gamma = \{\alpha_0, \alpha_1, \dots, \alpha_{n-1}\}$

• error vector $ec{e} \in \mathbb{F}_{2^m}^n$, $\operatorname{wt}\left(ec{e}\right) = t$ chosen during encryption

•
$$S(Y) \leftarrow \underbrace{(\vec{e} \oplus \vec{c})H^{\top}}_{\in \mathbb{F}_{2^m}^t} (Y^{t-1}, \cdots, Y, 1)^{\top}$$

• $\tau(Y) \leftarrow \sqrt{S^{-1}(Y) + Y} \mod g(Y) // \text{ by EEA}$
• $(\alpha(Y), \beta(Y)) \leftarrow \operatorname{EEA}(g(Y), \tau(Y))$
• $\sigma(Y) \leftarrow \alpha^2(Y) + Y\beta^2(Y)$
• $e_i \leftarrow 1 \text{ iff } \sigma(\alpha_i) = 0$

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

2 Preliminaries

3 Previous Work

4 Variants of Root-finding

Side Channel Security Aspects of Root Finding
 Message-aimed Attacks
 Kev-aimed Attacks

6 Performance

7 Conclusion

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

Ξ

- Biswas, Sendrier, PQCrypto 2008: HyMES McEliece implementation
- Strenzke, Tews, Molter, Overbeck, Shoufan, PQCrypto 2008: message-aimed side-channel attack

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Preliminaries

3 Previous Work

4 Variants of Root-finding

5 Side Channel Security Aspects of Root Finding

 Message-aimed Attacks
 Key-aimed Attacks

6 Performance

7 Conclusion

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

Ξ

$$\sigma(Y) = \prod_{i=0}^{w-1} (\alpha_{f_i} - Y)$$

Require: the polynomial $\sigma(Y)$ over \mathbb{F}_{2^m} **Ensure:** the set \mathcal{E} , where γ_i is a root of $\sigma(Y)$ if and only if $i \in \mathcal{E}$ 1: $\mathcal{E} = \emptyset$ 2: **for** i = 0 up to i = n - 1 **do** 3: if $\sigma(\gamma_i) = 0$ then 4: $\mathcal{E} \leftarrow \mathcal{E} \cup \{i\}$ 5: $\sigma(Y) \leftarrow \sigma(Y)/(Y \oplus \gamma_i)$ 6: end if 7: end for 8: return \mathcal{E} \rightarrow eval-rf. eval-div-rf

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つくや

Berlekamp Trace Algorithm

- Tr(Y) = Y + Y² + Y²² + ... + Y^{2^{m-1}}, and $\{\beta_1, \beta_2, \ldots, \beta_m\}$ is a standard basis of \mathbb{F}_{2^m} .
- initial call: $BTA(\sigma(Y), 1)$
- algorithm $BTA(\Omega(Y), i)$:

1: if deg
$$(\Omega(Y) \le 1)$$
 then
2: return root of $\Omega(Y)$
3: end if
4: $\Omega_0(Y) \leftarrow \gcd(\Omega(Y), \operatorname{Tr}(\beta_i \cdot Y))$
5: $\Omega_1(Y) \leftarrow \gcd(\Omega(Y), 1 + \operatorname{Tr}(\beta_i \cdot Y))$
6: return $\operatorname{BTA}(\Omega_0(Y), i+1) \cup \operatorname{BTA}(\Omega_1(Y), i+1)$
 $\rightarrow BTA$ -rf

Falko Strenzke

- Biswas, Herbert 2009: improvement of BTA with root-finding algorithms for low degrees
- efficient root-finding for degree 2 with lookup tables
- $\bullet \rightarrow BTZ_2$ -rf

▲ロト ▲掃 ト ▲ 田 ト ▲ 田 ト ― 田 ― の Q (~)

Root Finding with Linearized Polynomials

Definition

linearized polynomial:
$$L(Y) = \sum_i L_i Y^{2^i}$$
, where $L_i \in \mathbb{F}_{2^m}$.

Definition

affine polynomial: $A(Y) = L(Y) + \beta$ with $\beta \in \mathbb{F}_{2^m}$

• Federenko, Trifonov 2002:

•
$$A(x_i) = A(x_{i-1}) + L(\Delta_i), \Delta_i = x_i - x_{i-1} = \alpha^{\delta(x_i, x_{i-1})},$$

• where $\{\alpha^0, \alpha^1, \dots, \alpha^{m-1}\}$ is a standard basis of \mathbb{F}_{2^m} and $\operatorname{wt}(x_i \oplus x_{i-1}) = 1$

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

・ロト 人間 とうほう 人間 とう

Root Finding with Linearized Polynomials

$$f(Y) = f_3 Y^3 + \sum_{i=0}^{\lceil (t-4)/5 \rceil} Y^{5i} A_i(Y),$$
 (1)

where

$$A_i(Y) = f_{5i} + \sum_{j=0}^{3} f_{5i+2^j} Y^{2^j}.$$
 (2)

 \rightarrow *dcmp-rf*

・ロット (四) (山) (山) (山) (山) (山) (山) (山)

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

Root Finding with Linearized Polynomials – Hybrid Variant

dcmp-div-rf: perform divisions by found roots (after each 5 roots)

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

= nar

・ロト ・四ト ・ヨト ・ヨト

- 2 Preliminaries
- 3 Previous Work

4 Variants of Root-finding

- Side Channel Security Aspects of Root Finding
 Message-aimed Attacks
 - Key-aimed Attacks

6 Performance

7 Conclusion

Ξ

- Only timing attacks
- Message-aimed attacks: observe decryption and recover message
- Key-aimed attacks: observe decryption and recover key

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

3

・ロト ・ 四ト ・ モト・

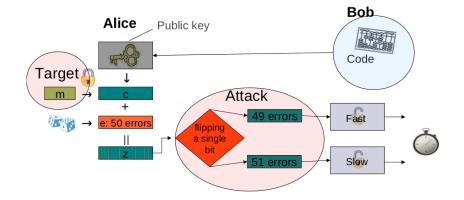
- 2 Preliminaries
- 3 Previous Work
- 4 Variants of Root-finding
- Side Channel Security Aspects of Root Finding
 Message-aimed Attacks
 Key-aimed Attacks

6 Performance

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

3


Previously Known Message-aimed Attacks

- $\deg(\sigma(Y)) = \operatorname{wt}(\vec{e})$ when $\operatorname{wt}(\vec{e}) \leq t$
- \rightarrow known TA against *eval-rf*:
- decryption time $\sim {
 m wt}\left(ec{e}
 ight)$

Fast and Secure Root Finding for Code-based Cryptosystems

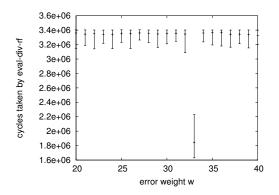
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Previously Known Message-aimed Attacks

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

23 / 38

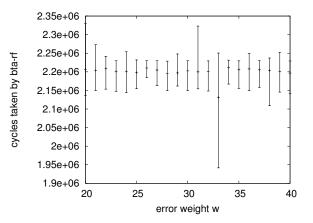

1

・ロト ・ 四ト ・ モト・

- countermeasure against this vulnerability:
- ensure $\deg(\sigma(Y)) = t$
- number of roots very small when $\operatorname{wt}\left(ec{e}
 ight)>t$
- also for $\operatorname{wt}(\vec{e}) < t$ due to countermeasure
- ightarrow number of roots very small when $\operatorname{wt}\left(ec{e}
 ight)
 eq t$

Vulnerability of eval-div-rf

remaining vulnerability of *eval-div-rf* (t = 33):



- number of roots very small when $\operatorname{wt}\left(ec{e}
 ight)
 eq t$
- \rightarrow two-bit-flip attack is still successful:

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

Vulnerability of BTA-rf

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

26 / 38

 \equiv

<ロト <回ト < 回ト < 回ト

- 2 Preliminaries
- 3 Previous Work
- 4 Variants of Root-finding
- Side Channel Security Aspects of Root Finding
 Message-aimed Attacks
 - Key-aimed Attacks
- 6 Performance

Fast and Secure Root Finding for Code-based Cryptosystems

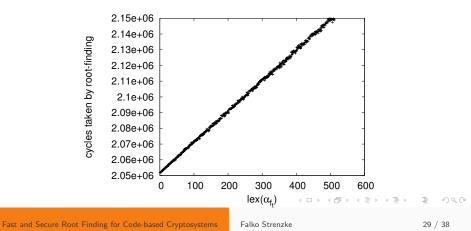
Falko Strenzke

3

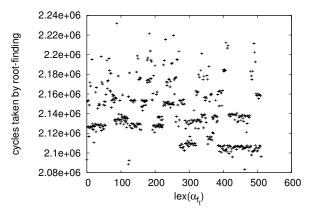
Error Positions and Support Elements

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke


28 / 38

E 990


イロト イロト イヨト イヨト

Vulnerability of eval-div-rf

- implementation evaluates $\sigma(Y)$ in order 0, 1, x, x + 1, ... (lexicographical ordering)
- "support-scan": t 1 error positions fixed and the t th position varies (same order)

Vulnerability of *BTA-rf*?

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

30 / 38

 \equiv

<ロト <回ト < 回ト < 回ト

- 2 Preliminaries
- 3 Previous Work
- 4 Variants of Root-finding
- 5 Side Channel Security Aspects of Root Finding

 Message-aimed Attacks
 Kev-aimed Attacks

6 Performance

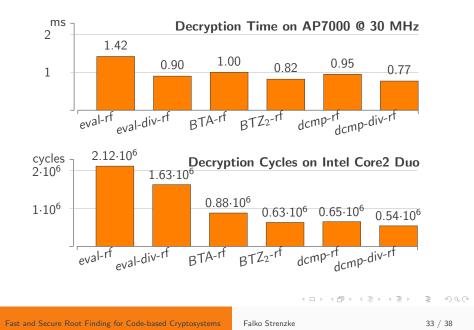
7 Conclusion

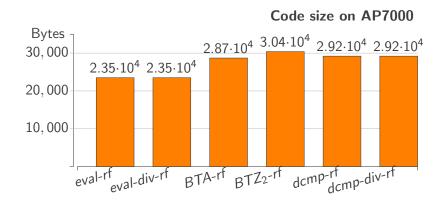
Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

Ξ

- n = 2960, t = 56 with more than 122 bit security
- Atmel AVR32 AP7000

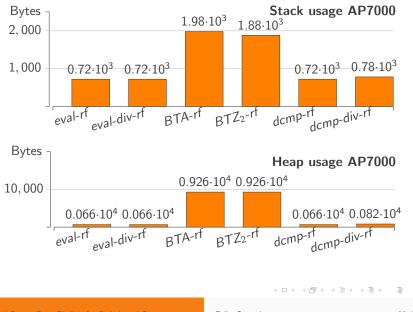

Fast and Secure Root Finding for Code-based Cryptosystems


Falko Strenzke

32 / 38

<□▶ <□▶ < □▶ < □▶ < □▶ = □ - つへ⊙

Performance – Decryption Time


Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

34 / 38

3

Performance – RAM Usage

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

35 / 38

- 2 Preliminaries
- 3 Previous Work
- 4 Variants of Root-finding
- 5 Side Channel Security Aspects of Root Finding
 o Message-aimed Attacks
 o Key-aimed Attacks
- 6 Performance

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

Ξ

- many side-channel security issues in root-finding algorithms
- performance result: high RAM demands of BTA-rf
- *dcmp-rf* offers both side-channel security and good performance
- hardware implementation: parallelization issues

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thank you!

download the McEliece implementation and these slides: http://crypto-source.de

Fast and Secure Root Finding for Code-based Cryptosystems

Falko Strenzke

38 / 38

= nar

・ロト ・ 四ト ・ モト・