Side Channels in the McEliece PKC

F. Strenzke E. Tews H. G. Molter R. Overbeck A. Shoufan

November 6, 2008

同 ト イ ヨ ト イ ヨ ト

э

F. Strenzke, E. Tews, H. G. Molter, R. Overbeck, A. Shoufan Side Channels in the McEliece PKC

Author Information

- F. Strenzke: strenzke@flexsecure.de, FlexSecure GmbH, Germany
- E. Tews: e_tews@cdc.informatik.tu-darmstadt.de, Cryptography and Computeralgebra, Department of Computer Science, Technische Universität Darmstadt, Germany
- H. G. Molter and A. Shoufan: molter@iss.tu-darmstadt.de, shoufan@iss.tu-darmstadt.de, Integrated Circuits and Systems Lab, Department of Computer Science, Technische Universität Darmstadt, Germany

/∃ ► < ∃ ►

• R. Overbeck: raphael.overbeck@epfl.ch Ecole Polytechnique Federale de Lausanne, Switzerland

Preliminaries

- Side Channel Attacks
- Error Correction in the McEliece

2 The Timing Attack

3 A feasable Power Analysis Attack

4 Conclusion

Preliminaries

The Timing Attack A feasable Power Analysis Attack Conclusion Side Channel Attacks Error Correction in the McEliece

Side Channel Attacks

- Cryptographic algorithms are executed by devices.
- These devices reveal certain physical properties to the environment:
 - power consumption
 - running time
 - electromagnetic radiation
- These quantities might be related to secrets (secret key) that are input to the algorithms.

Measurement and evaluation of these quantities to reveal the secret \rightarrow side channel attack

Preliminaries

The Timing Attack A feasable Power Analysis Attack Conclusion Side Channel Attacks Error Correction in the McEliece

Side Channel Attacks

Some facts about side channel attacks

- Known since 1996
- Most explored variants:
 - Power Analyis Attacks
 - Timing Attacks (affects also general purpose computers)
- new variants on general purpose computers: microarchitectural attacks
 - branch prediction attacks
 - cache attacks

Side Channel Attacks Error Correction in the McEliece

Error Correction with the Error Locator Polynomial

definition of the error locator polynomial:

$$\sigma_{\vec{e}}(X) = \prod_{j \in \mathcal{T}_e} (X - \gamma_j) \in \mathbb{F}_{2^m}[X], \tag{1}$$

where $T_{\vec{e}} = \{i | e_i = 1\}$ and \vec{e} is the error vector of the distorted code word to be decoded.

② Once the error locator polynomial is known, the error vector \vec{e} is determined as

$$\vec{e} = (\sigma_{\vec{e}}(\gamma_0), \sigma_{\vec{e}}(\gamma_1), \cdots, \sigma_{\vec{e}}(\gamma_{n-1})) \oplus (1, 1, \cdots, 1).$$
(2)

Side Channel Attacks Error Correction in the McEliece

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The Patterson Algorithm - 1

The Patterson Algorithm actually does not determine σ_e(X) as defined above, but computes σ_e(X) where

$$\bar{\sigma}_{\vec{e}}(X) = \sigma_{\vec{e}}(X) \text{ if wt}(\vec{e}) \leq t.$$

- Without derivation: For wt (*e*) > t, the degree of *σ*_{*e*}(X) will be t with very high probability.
- From the definition of the error locator polynomial $\sigma_{\vec{e}}(X) = \prod_{j \in \mathcal{T}_e} (X \gamma_j) \in \mathbb{F}_{2^m}[X]$, it follows that for $\operatorname{wt}(\vec{e}) \leq t$ its degree is equal to $\operatorname{wt}(\vec{e})$

Side Channel Attacks Error Correction in the McEliece

・ 同 ト ・ ヨ ト ・ ヨ ト

The Patterson Algorithm - 2

Relation of the degree of the error locator polynomial in the decryption operation to the number of "errors in the ciphertext"

- $\operatorname{wt}(\vec{e}) = t \to \operatorname{deg}(\bar{\sigma}_{\vec{e}}(X)) = t \text{ (proper ciphertext)}$
- $\operatorname{wt}(\vec{e}) > t \to \operatorname{deg}(\bar{\sigma}_{\vec{e}}(X)) = t$ (with very high probability)

•
$$\operatorname{wt}(\vec{e}) < t \to \operatorname{deg}(\bar{\sigma}_{\vec{e}}(X)) = \operatorname{wt}(\vec{e})$$

The Properties exploited by the Attack

• The larger the degree of error locator polynomial, the longer the running time of the decryption operation: it is evaluated $n = 2^m$ times in the final step

$$\vec{e} = (\sigma_{\vec{e}}(\gamma_0), \sigma_{\vec{e}}(\gamma_1), \cdots, \sigma_{\vec{e}}(\gamma_{n-1})) \oplus (1, 1, \cdots, 1).$$

 $(m=11 \rightarrow n=2048)$

- The attacker can flip bits of an intercepted ciphertext and influence the actual number of "errors in the ciphertext"
- The goal of the attacker is to determine the secret \vec{e} used during encryption. (Allows to recover the message.)

- ∢ ≣ ▶

The Concept of the Attack

Alice	Eve	Bob
encypts m to z		
sends $z \rightarrow$	intercepts z, flips	
	bit at position <i>i</i> in	
	z resulting in z'	
	sends $z' \longrightarrow$	decrypts z'
	measures decryption \leftarrow	
	time	
Eves decision strategy:		
"long" decryption time	$deg\left(ar{\sigma}_{ec{e}} ight) = t$	$\rightarrow e_i = 0$
"short" decryption tim	$e \rightarrow \deg(\bar{\sigma}_{\vec{e}}) = t - 1$	\to $e_i=1$

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

The Attack Algorithm

Require: ciphertext \vec{z} , and the parameter t, of the McEliece PKC. **Ensure:** a guess \vec{e}' of the error vector \vec{e} used by Alice to encrypt \vec{z} .

- 1: for i = 0 to n 1 do
- 2: Compute $\vec{z}_i = \vec{z} \oplus \operatorname{sparse_vec}(i)$.
- 3: Take the time u_i as the mean of N measured decryption times where \vec{z}_i is used as the input to the decryption device.
- 4: end for
- 5: Put the *t* smallest timings u_i into the set *M*.
- 6: **return** the vector \vec{e}' with entries $e'_i = 1$ when $u_i \in M$ and all other entries as zeros.

Experimental Results

The Attack was executed against a Java Implementation on a PC: $N = 2 \rightarrow 48\%$ of the executed attacks recovered all positions of \vec{e} correctly

Countermeasure

- A straightforward countermeasure: artificially increase the degree of the error locator polynomial to *t* before evaluating it.
- Remaining research problem: Still a detectable difference?

CCA2 Conversion

Using the McEliece PKC with a CCA2-Conversion does not affect the attack: Still a substring corresponding to $\vec{m}\mathbf{G}^{\mathrm{pub}} \oplus \vec{e}$ will appear in the ciphertext.

A B > A B >

Power Analysis Attacks

A Power Analysis Attack is a side channel attack in which

- the power consumption during the execution of the secret operation is measured,
- and the attacker tries to extract information about the secret on the basis of the measured data.

Example: RSA (square and multiply) If the power traces of a multiplication and a squaring can be dinstinguished, the key can be extracted.

Generation of Parity Check Matrix

$$h_{i,j} = g(\gamma_{j-1})^{-1} \sum_{s=t-i+1}^{t} g_s \gamma_{j-1}^{s-t+i-1}, \qquad (3)$$

< 🗇 > < 🖃 >

- ∢ ⊒ →

э

where i = 1, ..., t and j = 1, ..., n.

Countermeasures

Countermeasures to protect against Power Analysis Attacks:

• blinding:

random non-zero value $r_i \in \mathbb{F}_{2^m}$

$$h_{i,j} = g(\gamma_{j-1})^{-1} r_i^{-1} \left(\sum_{s=t-i+1}^t (r_i g_s) \gamma_{j-1}^{s-t+i-1} \right).$$
(4)

randomize the order of evaluation of the matrix elements

• we have seen examples for possible side channel attacks and countermeasures

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

much more research has to be done

Thank you!

▲ □ → ▲ 三

æ

-∢ ≣ →

F. Strenzke, E. Tews, H. G. Molter, R. Overbeck, A. Shoufan Side Channels in the McEliece PKC