Manger's Attack revisited

Falko Strenzke!

1 - FlexSecure GmbH, Germany,
strenzke@flexsecure.de

February 8, 2013

=] =

_ Falko Strenzke 1/ 1

= na
[=

il
FlexSecure KOB"" Group

strenzke@flexsecure.de

Manger's Attack

o RSA-OAEP Encoding introduced to thwart Bleichenbacher's
Attack against RSA with PKCS#1 v1.5 Encoding

[m]

=)

_ Falko Strenzke 2/ 1

E na
FlexSecure

KOBIL[...,

Manger's Attack

o RSA-OAEP Encoding introduced to thwart Bleichenbacher's
Attack against RSA with PKCS#1 v1.5 Encoding

o The OAEP is a so called CCA2 conversion that secures a
cryptosystem against adaptive chosen ciphertext attacks

[m]

=)

_ Falko Strenzke 2/ 1

E na
FlexSecure

KOBIL[...,

Manger's Attack

o RSA-OAEP Encoding introduced to thwart Bleichenbacher's
Attack against RSA with PKCS#1 v1.5 Encoding

o The OAEP is a so called CCA2 conversion that secures a
cryptosystem against adaptive chosen ciphertext attacks
the decryption)

o (any manipulation of an original ciphertext is detected during

_ Falko Strenzke 2/ 1

=] =) = E E 9DaAn
[
FlexSecure

KoBILl[...,

o RSA-OAEP Encoding introduced to thwart Bleichenbacher's
Attack against RSA with PKCS#1 v1.5 Encoding

o The OAEP is a so called CCA2 conversion that secures a
cryptosystem against adaptive chosen ciphertext attacks

o (any manipulation of an original ciphertext is detected during
the decryption)

o CRYPTO 2001: James Manger introduces a Fault/Timing
Attack against straightforward implementations of RSA-OAEP

=} = = = £ DA

[ol
| e 2 e KoBIL

RSA

o public key: public exponent e and public modulus n

= =)

_ Falko Strenzke 3 /1

E = 9Dae
N —
FlexSecure KOB”" Group

RSA

o public key: public exponent e and public modulus n

o private key: private exponent d with x¢¢ = x mod n

=] =

_ Falko Strenzke 3/ 1

E = 9Dae
= —
FlexSecure KOB”" Group

RSA

o public key: public exponent e and public modulus n

o private key: private exponent d with x¢¢ = x mod n
o encryption: z = m® mod n

=] =

_ Falko Strenzke 3/ 1

E = 9Dae
N —
FlexSecure KOB”" Group

o public key: public exponent e and public modulus n
o private key: private exponent d with x¢¢ = x mod n
o encryption: z = m® mod n

o decryption: m = z9 = m*® mod n

=} = = E 9DaAn

‘-I ool
_ Falko Strenzke 3 /1 flexsecure KOBILTfao

OAEP Encoding

correct
form?

Padding \ Message

: e
=007 A

[Y E E RSA plaintext |
' '

T
leading / T

octet

Parameters | RSA ciphertext |

Figure: The RSA-OAEP decoding procedure. Here, @ denotes XOR.

o 5 Aac

-
il
| e e KoBIL

it
<

| RSA public modulus n

|
P

r

RSA plaintext

o OAEP Decoding checks that Y =0

=] =

_ Falko Strenzke 5/ 1

12N Ge
[

il
FlexSecure KOB"" Group

| RSA public modulus n

|
P

r

RSA plaintext

o OAEP Decoding checks that Y =0
o (Y # 0 — "“supernumerary octet”)

=] =

_ Falko Strenzke 5/ 1

12N Ge
[

il
FlexSecure KOB"" Group

Manger's Attack - the observabl_

|
P

r

RSA plaintext

o OAEP Decoding checks that Y =0
o (Y # 0 — "“supernumerary octet”)
o Y # 0 can be learned either through

=] =

_ Falko Strenzke 5/ 1

12N Ge
[

il
FlexSecure KOB"" Group

Manger's Attack - the observabl_

|
P

r

RSA plaintext

o OAEP Decoding checks that Y =0
o (Y # 0 — "“supernumerary octet”)

o Y # 0 can be learned either through
o a specific error message

=] =

_ Falko Strenzke 5/ 1

12N Ge
[

il
FlexSecure KOB"" Group

Manger's Attack - the observable_

RSA public modulus n

RSA plaintext

o OAEP Decoding checks that Y =0
o (Y # 0 — "“supernumerary octet”)

o Y # 0 can be learned either through
o a specific error message

errors

o shorter time to the error message compared to later OAEP

=] =

_ Falko Strenzke 5/ 1

12N Ge
[

il
FlexSecure KOBIL’IG"’"P

Manger's Attack - the observable _

RSA public modulus n |

RSA plaintext |

o OAEP Decoding checks that Y =0

o (Y # 0 — "“supernumerary octet”)
o Y # 0 can be learned either through

o a specific error message

o shorter time to the error message compared to later OAEP
errors

o (time difference might become huge if the attacker can
control the public parameters to be hashed within the OAEP
decoding routine)

=} = = = £ DA

[= ol
| e s e KoBIL

Manger's Attack - the Informati_

RSA public modulus n

RSA plaintext

o The attacker wants to decrypt the ciphertext cp = m§ mod n

=] =

_ Falko Strenzke 6/ 1

12N Ge
[

il
FlexSecure KOBIL’IG"’"P

Manger's Attack - the Information _

RSA public modulus n

RSA plaintext

o The attacker wants to decrypt the ciphertext cp = m§ mod n
o He chooses f € {0,1,...,n—1}

=] =

_ Falko Strenzke 6/ 1

12N Ge
[

il
FlexSecure KOBIL’IGMW

Manger's Attack - the Information _

RSA public modulus n

RSA plaintext

o The attacker wants to decrypt the ciphertext cp = m§ mod n
o He chooses f € {0,1,...,n—1}

o He creates ciphertexts ¢ = f€co = (fmg)¢ mod n

=] =

_ Falko Strenzke 6/ 1

12N Ge
[

il
FlexSecure KOBILIIG,.,,,,,

Manger's Attack - the Information _

RSA public modulus n |

RSA plaintext |

o The attacker wants to decrypt the ciphertext cp = m§ mod n
o He chooses f € {0,1,...,n—1}
o He creates ciphertexts ¢ = f€co = (fmg)¢ mod n

o He observes the decryption of ¢

=} = = = £ DA

[ol
| e s e KoBIL

Manger's Attack - the Information _

RSA public modulus n |

RSA plaintext |

o The attacker wants to decrypt the ciphertext cp = m§ mod n
o He chooses f € {0,1,...,n—1}

o He creates ciphertexts ¢ = f€co = (fmg)¢ mod n

o He observes the decryption of ¢

o If Y#0 he Iearns‘fmomoanB‘

=} = = = £ DA

[ol
| e s e KoBIL

Manger's Attack - the Information _

RSA public modulus n |

RSA plaintext |

©

The attacker wants to decrypt the ciphertext cp = m§ mod n
He chooses f € {0,1,...,n—1}

He creates ciphertexts ¢r = f€cy = (fmp)€ mod n

o

©

©

He observes the decryption of cf
If Y #0 he Iearns‘fmomoanB‘

Manger gives a specific strategy how to choose f initially

©

©

=} = = = £ DA

[ol
| e s e KoBIL

Manger's Attack - the Information G_

RSA public modulus n |

RSA plaintext |

©

The attacker wants to decrypt the ciphertext cp = m§ mod n
He chooses f € {0,1,...,n—1}

He creates ciphertexts ¢r = f€cy = (fmp)€ mod n

o

©

©

He observes the decryption of cf
If Y #0 he Iearns‘fmomoanB‘

Manger gives a specific strategy how to choose f initially

©

©

o and how to adapt f in in subsequent queries
=] = = E = na

[ol
| e s e KoBIL

= =)

_ Falko Strenzke 7 /1

E = 9Dae
N —
FlexSecure KOB”" Group

Analysis of the OpenSSL Librar_

|zero = num - flen;
if (Izero < 0)
{
/* signalling this error immediately after detection might allow for
* side-channel attacks (e.g. timing if 'plen’ is huge — cf. James
* H. Manger, "A Chosen Ciphertext Attack on RSA Optimal
* Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001),
* so we use a 'bad’ flag */
bad = 1;
lzero = 0;
flen = num; /* don't overflow the memcpy to padded_from */

}

if (memcmp(db, phash, SHA_DIGEST_LENGTH) != 0 || bad)
goto decoding_err;

=} = = = £ DA

p ool
_ Falko Strenzke 8 /1 flexsecure KOBILTfoo

Analysis of the Botan Library _

key_length /= 8;

if(in_length > key_length)

throw Decoding_Error(" Invalid EMEL encoding”);
SecureVector<byte> tmp(key_length);
tmp.copy(key_length - in_length, in, in_length);
mgf->mask(tmp + HASH_LENGTH, tmp.size() - HASH_LENGTH, tmp,
HASH_LENGTH);
mgf->mask(tmp, HASH_LENGTH, tmp + HASH_LENGTH, tmp.size() -
HASH_LENGTH);
for(u32bit j = 0; j != Phash.size(); ++j)

if(tmp[j+ HASH_LENGTH] != Phashl[j])

throw Decoding_Error(" Invalid EME1 encoding”);

=} = = = £ DA

p ool
_ Falko Strenzke 9 /1 flexsecure KOBILTfoo

for either library

o the strongest form of Manger's Attack (exploiting the running
time of hash computation of huge Parameters) is not possible

=] =

= wae
u oIl
FlexSecure KOB”"Iﬂmup

_ Falko Strenzke 10 / 1

Analysis of OpenSSL and Bot_

o the strongest form of Manger's Attack (exploiting the running
for either library

time of hash computation of huge Parameters) is not possible
vulnerability

o OpenSSL did not respond to the report of the potential

[m]

=)

_ Falko Strenzke 10 / 1

FlexSecure

12N Ge

KOBIL[...,

Analysis of OpenSSL and Bota_

o the strongest form of Manger's Attack (exploiting the running
time of hash computation of huge Parameters) is not possible
for either library

o OpenSSL did not respond to the report of the potential
vulnerability

o The Botan main developer released a patch after the
vulnerability was reported to him

=] = = =

12N Ge
[

il
| e 01 e KoBIL

= =)

_ Falko Strenzke 11 /1

E = 9Dae
K —
FlexSecure KOB”" Group

A new potential Vulnerabilit
Conversion

{

void Biglnt::binary_encode(byte output|[]) const

const u32bit sig_bytes = bytes();
for(u32bitj =0; _] = sigibytes; ++J)
}

output[sig_bytes-j-1] = byte_at(j);

o the running time of this routine obviously depends on the
number of octets of the encoded integer

_ Falko Strenzke 12 / 1

[m]

=)

FlexSecure

12N Ge

KOBIL[...,

A new potential Vulnerability
Conversion

{

void Biglnt::binary_encode(byte output|[]) const

const u32bit sig_bytes = bytes();
for(u32bitj =0; _] = sigibytes; ++J)
}

output[sig_bytes-j-1] = byte_at(j);

o the running time of this routine obviously depends on the
number of octets of the encoded integer

o — potential timing or power vulnerability!

_ Falko Strenzke 12 / 1

[m]

=)

FlexSecure

12N Ge

KOBIL[...,

A new potential Vulnerability
Conversion

void Biglnt::binary_encode(byte output|[]) const
{

const u32bit sig_bytes = bytes();
for(u32bitj =0; _] = sigibytes; ++J)
output|[sig_bytes-j-1] = byte_at(j);

}

o the running time of this routine obviously depends on the
number of octets of the encoded integer

o — potential timing or power vulnerability!
o independent of encoding method

=] =

12N Ge
[

il
| e 11 e KoBIL

A new potential Vulnerability i
Conversion

void Biglnt::binary_encode(byte output|[]) const

{

const u32bit sig_bytes = bytes();
for(u32bitj =0; _J = sigibytes; ++J)
output|[sig_bytes-j-1] = byte_at(j);

o the running time of this routine obviously depends on the
number of octets of the encoded integer

o — potential timing or power vulnerability!
o independent of encoding method

o the integer encoding routine in OpenSSL is equivalent

=] =

_ Falko Strenzke 12 / 1

u oIl
FlexSecure KOB""Iﬂmup

£ DA

= =)

_ Falko Strenzke 13 /1

E = 9Dae
K —
FlexSecure KOB”" Group

A potential Vulnerability i
(MPI) Arithmetic

encoding routine

o We take a look back one step further from the integer

[m]

=)

_ Falko Strenzke 14 / 1

FlexSecure

12N Ge

KOBIL[...,

A potential Vulnerability i
(MPI) Arithmetic

encoding routine

o We take a look back one step further from the integer

o with respect to conditional branching based on Y =0

[m]

=)

_ Falko Strenzke 14 / 1

FlexSecure

12N Ge

KOBIL[...,

A potential Vulnerability in
(MPI) Arithmetic

encoding routine

o We take a look back one step further from the integer

o with respect to conditional branching based on Y =0

o We choose the PolarSSL Library for embedded systems

[m]

=)

_ Falko Strenzke 14 / 1

FlexSecure

12N Ge

KOBIL[...,

A potential Vulnerability in th
(MPI) Arithmetic

encoding routine

o We take a look back one step further from the integer

o with respect to conditional branching based on Y =0

o We choose the PolarSSL Library for embedded systems

o We assume the last operation of the RSA computation to be
a modular reduction implemented as a division

_ Falko Strenzke 14 / 1

[m]

=)

FlexSecure

12N Ge

KOBIL[...,

A potential Vulnerability in the
(MPI) Arithmetic

o We take a look back one step further from the integer
encoding routine

o with respect to conditional branching based on Y =0
o We choose the PolarSSL Library for embedded systems

o We assume the last operation of the RSA computation to be
a modular reduction implemented as a division

o in PolarSSL, the result of the division is copied with routine
mpi_copy ()

=] =

_ Falko Strenzke 14 / 1

il
FlexSecure KOB""Iﬂmup

£ DA

typedef struct {

int n;

us *p;

} mpi;

int mpi_copy(mpi *X, const mpi *Z) { // Z is src
int ret, i;
if(X ==2)
return(0);

for(i=2Z->n-1;i>0;i--)
if(Z->p[i]!I=0)
break;
i++; // i = # significant words in Z (src)
X->s = Z->s5;
MPI_CHK(mpi_grow(X, i));
memset(X->p, 0, X->n * ciL);
memcpy(X->p, Z->p, i*cil);

}

[m] = = = =
_ Falko Strenzke 15 / 1

= waAl
u oIl
FlexSecure KOB”"Iﬂmup

The mpi_copy() Routine in the PoIarSSL_

count
leading
zero

| modulus n |

)
1]
)

I
~)
=<
«
4
a

dest | I

eitheré or¢ l
dest |
l

[.

set unused
words
to zero

H
0000...000 # ? Y

S—

P
'
'
[

H
copy %{ 2y dest |
significant L v
words
=] = = E =
" ‘1l
Falko Strenzke 16 /1 FlexSecure KOBILEIG"’"”

the running time on “Y = 07"

o the call to memcpy (potentially) offers a plain dependency of

[m]

=)

_ Falko Strenzke 17 / 1

FlexSecure

12N Ge

KOBIL[...,

o the call to memcpy (potentially) offers a plain dependency of
the running time on “Y = 07"

o other routines in this function also show such dependencies

=] =

= wae
u oIl
FlexSecure KOB”"Iﬂmup

_ Falko Strenzke 17 / 1

o the call to memcpy (potentially) offers a plain dependency of
the running time on “Y = 07"

o other routines in this function also show such dependencies

o (also with opposed timing effects regarding Y = 0)

_ Falko Strenzke 17 / 1

=] =) = E E 9DaAn
FlexSecure

KOBIL[...,

The mpi_copy() Routine in the _

o the call to memcpy (potentially) offers a plain dependency of
the running time on “Y = 07"

o other routines in this function also show such dependencies
o (also with opposed timing effects regarding Y = 0)

o but depend on the history of source and destination MPI
operands

=] =

na
u oIl
FlexSecure KOB""Iﬂmup

_ Falko Strenzke 17 / 1

The mpi_copy() Routine in the _

o the call to memcpy (potentially) offers a plain dependency of
the running time on “Y = 07"

o other routines in this function also show such dependencies
o (also with opposed timing effects regarding Y = 0)

o but depend on the history of source and destination MPI
operands

o — must be accounted for in a concrete implementation

=} = = = =

na
.—l ool
R kB

FlexSecure

o RSA key size: bit length of the public modulus n

[m]

=)

_ Falko Strenzke 18 / 1

FlexSecure

12N Ge

KOBIL[...,

Impact of the keysize on the_

o RSA key size: bit length of the public modulus n

o typical key sizes are multiples of 32 (powers of two)

[m]

=)

_ Falko Strenzke 18 / 1

FlexSecure

12N Ge

KOBIL[...,

Impact of the keysize on the _

o RSA key size: bit length of the public modulus n

o typical key sizes are multiples of 32 (powers of two)

o with untypical keysizes the MPI related vulnerabilities are also
possible with 32-bit words

=] =

= wae
u oIl
FlexSecure KOB""Iﬂmup

_ Falko Strenzke 18 / 1

Impact of the keysize on the MPI_

32-bit
word
byte / l \
\ ------ o " o= o "
. ' ' . '
. P s aw ' . '
N . L} L L] L}
...... Lo.....t Leveoocbonoaas!
Y: untypical key size modulus

standard key size modulus

-
=<

o = = £ DA

[= ol
| s 191 e KoBIL

Impact of the keysize on the MPI r_

32-bit
word
byte / l \
\ ------ o " o= o "
. ' ' . '
. P s aw ' . '
N . L} L L] L}
...... Lo.....t Leveoocbonoaas!
Y: untypical key size modulus

standard key size modulus

-
=<

o for such untypical key sizes Y = 0 means that the number of
words in m is smaller by one compared to Y # 0

=} = = = £ DA

[= ol
| s 191 e KoBIL

= =)

_ Falko Strenzke 20 / 1

E = 9Dae
K —
FlexSecure KOB”" Group

o we have identified “unbalanced conditional branching” based
on a message property

=] =

= wae
u oIl
FlexSecure KOB”"Iﬂmup

_ Falko Strenzke 21 / 1

o we have identified “unbalanced conditional branching” based
on a message property

o this gives an onset for timing attacks (TA)

=] =

= wae
u oIl
FlexSecure KOB”"Iﬂmup

_ Falko Strenzke 21 / 1

On the relevance of the new p_

o we have identified “unbalanced conditional branching” based
on a message property

o this gives an onset for timing attacks (TA)

o and simple power analysis attacks (SPA) (refined TA revealing
the running time of individual subroutines)

u oIl
FlexSecure KOB""Iﬂmup

=} = 12N Ge
R

On the relevance of the new pot_

o we have identified “unbalanced conditional branching” based
on a message property

o this gives an onset for timing attacks (TA)

o and simple power analysis attacks (SPA) (refined TA revealing
the running time of individual subroutines)
o from the point of view of security engineering, any

implementation must analyzed with respect to these
vulnerabilities

=} = = = £ DA

[= ol
| s a1 el KoBIL

platform properties influencing the exploitability:
o source code

=] =

= wae
u oIl
FlexSecure KOB”"Iﬂmup

_ Falko Strenzke 22 / 1

platform properties influencing the exploitability:
o source code

o hardware

=] =

= wae
u oIl
FlexSecure KOB”"Iﬂmup

_ Falko Strenzke 22 / 1

platform properties influencing the exploitability
o source code

o hardware

o compiler

=] =

= wae
u oIl
FlexSecure KOB”"Iﬂmup

_ Falko Strenzke 22 / 1

platform properties influencing the exploitability:
o source code

o hardware

o compiler

o "accessibility” for an attacker (timing / power)

[m] = = =

[= ol
| e st e KoBIL

E 9Dac

platform properties influencing the exploitability:

o source code < solve problem here for TA
o hardware

o compiler

o “accessibility” for an attacker (timing / power)

[m] = = =

[= ol
| s 1 e KoBIL

E 9Dac

= =)

_ Falko Strenzke 23 /1

E = 9Dae
K —
FlexSecure KOB”" Group

o Previously proposed countermeasures incurr security threats:

=] =

_ Falko Strenzke 24 / 1

= wae
u oIl
FlexSecure KOB”"Iﬂmup

Previously proposed Cou nter_

o Previously proposed countermeasures incurr security threats

o (1) if Y # 0, one shall used randomly generated dummy
values in the further OAEP decoding

=] =

= wae
u oIl
FlexSecure KOB”"Iﬂmup

_ Falko Strenzke 24 / 1

Previously proposed Cou nterme_

o Previously proposed countermeasures incurr security threats:

o (1) if Y # 0, one shall used randomly generated dummy
values in the further OAEP decoding

o — threat: random values turn an otherwise deterministic

processing indeterministic, which might be detected through
side channels by repeatedly decrypting the same ciphertext

=] =

_ Falko Strenzke 24 / 1

u oIl
FlexSecure KOBIL’IG"’"P

£ DA

Previously proposed Cou ntermea_

o Previously proposed countermeasures incurr security threats:

o (1) if Y # 0, one shall used randomly generated dummy
values in the further OAEP decoding

o — threat: random values turn an otherwise deterministic
processing indeterministic, which might be detected through
side channels by repeatedly decrypting the same ciphertext

o (2)if Y #0, one shall set the m=0...0 in the further
OAEP decoding

=} = = = £ DA

il
R kB

FlexSecure

Previously proposed Cou ntermeasu_

©

Previously proposed countermeasures incurr security threats:

©

(1) if Y # 0, one shall used randomly generated dummy
values in the further OAEP decoding

o — threat: random values turn an otherwise deterministic
processing indeterministic, which might be detected through
side channels by repeatedly decrypting the same ciphertext

(2) if Y #0, one shall set the m =0...0 in the further
OAEP decoding

— threat: an “all zero” octet string is an extreme case of low
Hamming weight and might very likely be detected through
power analysis

o

©

=} = = = £ DA

[= ol
| s a1 e KoBIL

o We give a countermeasure against the MPI encoding routine:

=] =

= wae
u oIl
FlexSecure KOB”"Iﬂmup

_ Falko Strenzke 25 / 1

o We give a countermeasure against the MPI encoding routine:
o C++ source code

=] =

= wae
u oIl
FlexSecure KOB”"Iﬂmup

_ Falko Strenzke 25 / 1

Effective Countermeasures ag_

o We give a countermeasure against the MPI encoding routine
o C++ source code

o number of iterations in the encoding routine depends only on
the key size

=] =

= wae
u oIl
FlexSecure KOB""Iﬂmup

_ Falko Strenzke 25 / 1

Effective Countermeasures ag_

o We give a countermeasure against the MPI encoding routine:
o C++ source code

o number of iterations in the encoding routine depends only on
the key size

o enforces Y = 0 already in the encoding routine

& =

u oIl
FlexSecure KOB""Iﬂmup

=] na
_ Falko Strenzke 25 / 1

Effective Countermeasures agai_

o We give a countermeasure against the MPI encoding routine:
o C++ source code

o number of iterations in the encoding routine depends only on
the key size

o enforces Y = 0 already in the encoding routine

o uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

=} = = = £ DA

.—l ool
R kB

FlexSecure

Effective Countermeasures agains_

©

We give a countermeasure against the MPI encoding routine:
o C++ source code

o number of iterations in the encoding routine depends only on
the key size

o enforces Y = 0 already in the encoding routine

o uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

o use no conditional branching, not even comparison operators

=} = = = £ DA

[= ol
| s 1 e KoBIL

Effective Countermeasures agains_

©

We give a countermeasure against the MPI encoding routine:
o C++ source code

o number of iterations in the encoding routine depends only on
the key size

o enforces Y = 0 already in the encoding routine

o uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

o use no conditional branching, not even comparison operators

o but only logical operations

=} = = = £ DA

[= ol
| s 1 e KoBIL

Effective Countermeasures agains_

o We give a countermeasure against the MPI encoding routine:
o C++ source code

o number of iterations in the encoding routine depends only on
the key size

o enforces Y = 0 already in the encoding routine

o uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

o use no conditional branching, not even comparison operators
o but only logical operations

o logical masking replaces conditional branching

=} = = = £ DA

[= ol
| e 1 e KoBIL

o The last MPI routines in the decryption must “hide” the
number of words of m

=] =

= wae
u oIl
FlexSecure KOB”"Iﬂmup

_ Falko Strenzke 26 / 1

Outline of Countermeasures f_

o The last MPI routines in the decryption must “hide” the
number of words of m

o this can be done in the same manner as protecting the the
MPI encoding routine

[} 5 =

u oIl
FlexSecure KOB""Iﬂmup

12N Ge

_ Falko Strenzke 26 / 1

= =)

_ Falko Strenzke 27 /1

E = 9Dae
K —
FlexSecure KOB”" Group

Conclusion

o concerning the OpenSSL countermeasure, it is obvious that

there is no common notion concerning the relevance of the
leakage of “small” timing differences

=] =

_ Falko Strenzke 28 / 1

= 9Dae
K —
FlexSecure KOB”" Group

Conclusion

o concerning the OpenSSL countermeasure, it is obvious that

there is no common notion concerning the relevance of the
leakage of “small” timing differences

o (compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)

[m]

=] =

12N Ge
[

il
| s 1 e KoBIL

Conclusion

o concerning the OpenSSL countermeasure, it is obvious that

there is no common notion concerning the relevance of the
leakage of “small” timing differences

o (compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)
o even though Manger's Attack is known for almost 10 years,

we could find new leakages about crucial properties of the
message

o = = = DA
[= ol
| s 1 e KoBIL

Conclusion

o concerning the OpenSSL countermeasure, it is obvious that

there is no common notion concerning the relevance of the
leakage of “small” timing differences

o (compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)
o even though Manger's Attack is known for almost 10 years,

we could find new leakages about crucial properties of the
message

o in the MPI encoding routines

o = = = DA
[= ol
| s 1 e KoBIL

o concerning the OpenSSL countermeasure, it is obvious that
there is no common notion concerning the relevance of the
leakage of “small” timing differences

o (compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)
o even though Manger's Attack is known for almost 10 years,

we could find new leakages about crucial properties of the
message

o in the MPI encoding routines
o in the MPI arithmetic (under certain circumstances)

=} = = = £ DA

[= ol
| s 1 e KoBIL

o concerning the OpenSSL countermeasure, it is obvious that
there is no common notion concerning the relevance of the
leakage of “small” timing differences

o (compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)
o even though Manger's Attack is known for almost 10 years,

we could find new leakages about crucial properties of the
message

o in the MPI encoding routines
o in the MPI arithmetic (under certain circumstances)
o we propose countermeasures that ensure running times only
dependent on the key size for the potentially vulnerable
routines

=} = = = £ DA

[= ol
| s 1 e KoBIL

o Thank You!

= =)

= wae
u oIl
FlexSecure KOB”"Iﬂmup

_ Falko Strenzke 29 /1

	Introduction
	Analysis of Open Source Libraries with respect to Countermeasures
	A new potential Vulnerability in the Integer to Octet String Conversion
	A new potential Vulnerability in the Multi-Precision Integer Arithmetic
	On the relevance of the new potential Vulnerabilities
	Countermeasures
	Conclusion

