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Manger's Attack

o RSA-OAEP Encoding introduced to thwart Bleichenbacher's
Attack against RSA with PKCS#1 v1.5 Encoding
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Manger's Attack

o RSA-OAEP Encoding introduced to thwart Bleichenbacher's
Attack against RSA with PKCS#1 v1.5 Encoding

o The OAEP is a so called CCA2 conversion that secures a
cryptosystem against adaptive chosen ciphertext attacks
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cryptosystem against adaptive chosen ciphertext attacks
the decryption)

o (any manipulation of an original ciphertext is detected during
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o RSA-OAEP Encoding introduced to thwart Bleichenbacher's
Attack against RSA with PKCS#1 v1.5 Encoding

o The OAEP is a so called CCA2 conversion that secures a
cryptosystem against adaptive chosen ciphertext attacks

o (any manipulation of an original ciphertext is detected during
the decryption)

o CRYPTO 2001: James Manger introduces a Fault/Timing
Attack against straightforward implementations of RSA-OAEP
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RSA

o public key: public exponent e and public modulus n
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RSA

o public key: public exponent e and public modulus n

o private key: private exponent d with x¢¢ = x mod n
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RSA

o public key: public exponent e and public modulus n

o private key: private exponent d with x¢¢ = x mod n
o encryption: z = m® mod n
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o public key: public exponent e and public modulus n
o private key: private exponent d with x¢¢ = x mod n
o encryption: z = m® mod n

o decryption: m = z9 = m*® mod n
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OAEP Encoding
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Figure: The RSA-OAEP decoding procedure. Here, @ denotes XOR.
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| RSA public modulus n
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RSA plaintext

o OAEP Decoding checks that Y =0
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| RSA public modulus n
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RSA plaintext

o OAEP Decoding checks that Y =0
o (Y # 0 — "“supernumerary octet”)
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Manger's Attack - the observabl_
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RSA plaintext

o OAEP Decoding checks that Y =0
o (Y # 0 — "“supernumerary octet”)

o Y # 0 can be learned either through
o a specific error message
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Manger's Attack - the observable_

RSA public modulus n

RSA plaintext

o OAEP Decoding checks that Y =0
o (Y # 0 — "“supernumerary octet”)

o Y # 0 can be learned either through
o a specific error message

errors

o shorter time to the error message compared to later OAEP
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Manger's Attack - the observable _

RSA public modulus n |

RSA plaintext |

o OAEP Decoding checks that Y =0

o (Y # 0 — "“supernumerary octet”)
o Y # 0 can be learned either through

o a specific error message

o shorter time to the error message compared to later OAEP
errors

o (time difference might become huge if the attacker can
control the public parameters to be hashed within the OAEP
decoding routine)
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Manger's Attack - the Informati_

RSA public modulus n

RSA plaintext

o The attacker wants to decrypt the ciphertext cp = m§ mod n
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Manger's Attack - the Information _

RSA public modulus n

RSA plaintext

o The attacker wants to decrypt the ciphertext cp = m§ mod n
o He chooses f € {0,1,...,n—1}
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Manger's Attack - the Information _

RSA public modulus n

RSA plaintext

o The attacker wants to decrypt the ciphertext cp = m§ mod n
o He chooses f € {0,1,...,n—1}

o He creates ciphertexts ¢ = f€co = (fmg)¢ mod n
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Manger's Attack - the Information _

RSA public modulus n |

RSA plaintext |

o The attacker wants to decrypt the ciphertext cp = m§ mod n
o He chooses f € {0,1,...,n—1}
o He creates ciphertexts ¢ = f€co = (fmg)¢ mod n

o He observes the decryption of ¢
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Manger's Attack - the Information _

RSA public modulus n |

RSA plaintext |

o The attacker wants to decrypt the ciphertext cp = m§ mod n
o He chooses f € {0,1,...,n—1}

o He creates ciphertexts ¢ = f€co = (fmg)¢ mod n

o He observes the decryption of ¢

o If Y#0 he Iearns‘fmomoanB‘
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Manger's Attack - the Information _

RSA public modulus n |

RSA plaintext |

©

The attacker wants to decrypt the ciphertext cp = m§ mod n
He chooses f € {0,1,...,n—1}

He creates ciphertexts ¢r = f€cy = (fmp)€ mod n

o

©

©

He observes the decryption of cf
If Y #0 he Iearns‘fmomoanB‘

Manger gives a specific strategy how to choose f initially

©

©
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Manger's Attack - the Information G_

RSA public modulus n |

RSA plaintext |

©

The attacker wants to decrypt the ciphertext cp = m§ mod n
He chooses f € {0,1,...,n—1}

He creates ciphertexts ¢r = f€cy = (fmp)€ mod n

o

©

©

He observes the decryption of cf
If Y #0 he Iearns‘fmomoanB‘

Manger gives a specific strategy how to choose f initially

©

©

o and how to adapt f in in subsequent queries
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Analysis of the OpenSSL Librar_

|zero = num - flen;
if (Izero < 0)
{
/* signalling this error immediately after detection might allow for
* side-channel attacks (e.g. timing if 'plen’ is huge — cf. James
* H. Manger, "A Chosen Ciphertext Attack on RSA Optimal
* Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001),
* so we use a 'bad’ flag */
bad = 1;
lzero = 0;
flen = num; /* don't overflow the memcpy to padded_from */

}

if (memcmp(db, phash, SHA_DIGEST_LENGTH) != 0 || bad)
goto decoding_err;
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Analysis of the Botan Library _

key_length /= 8;

if(in_length > key_length)

throw Decoding_Error(" Invalid EMEL encoding”);
SecureVector<byte> tmp(key_length);
tmp.copy(key_length - in_length, in, in_length);
mgf->mask(tmp + HASH_LENGTH, tmp.size() - HASH_LENGTH, tmp,
HASH_LENGTH);
mgf->mask(tmp, HASH_LENGTH, tmp + HASH_LENGTH, tmp.size() -
HASH_LENGTH);
for(u32bit j = 0; j != Phash.size(); ++j)

if(tmp[j+ HASH_LENGTH] != Phashl[j])

throw Decoding_Error(" Invalid EME1 encoding”);
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for either library

o the strongest form of Manger's Attack (exploiting the running
time of hash computation of huge Parameters) is not possible
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Analysis of OpenSSL and Bot_

o the strongest form of Manger's Attack (exploiting the running
for either library

time of hash computation of huge Parameters) is not possible
vulnerability

o OpenSSL did not respond to the report of the potential
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Analysis of OpenSSL and Bota_

o the strongest form of Manger's Attack (exploiting the running
time of hash computation of huge Parameters) is not possible
for either library

o OpenSSL did not respond to the report of the potential
vulnerability

o The Botan main developer released a patch after the
vulnerability was reported to him
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A new potential Vulnerabilit
Conversion

{

void Biglnt::binary_encode(byte output|[]) const

const u32bit sig_bytes = bytes();
for(u32bitj =0; _] = sigibytes; ++J)
}

output[sig_bytes-j-1] = byte_at(j);

o the running time of this routine obviously depends on the
number of octets of the encoded integer
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A new potential Vulnerability
Conversion

{

void Biglnt::binary_encode(byte output|[]) const

const u32bit sig_bytes = bytes();
for(u32bitj =0; _] = sigibytes; ++J)
}

output[sig_bytes-j-1] = byte_at(j);

o the running time of this routine obviously depends on the
number of octets of the encoded integer

o — potential timing or power vulnerability!
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A new potential Vulnerability
Conversion

void Biglnt::binary_encode(byte output|[]) const
{

const u32bit sig_bytes = bytes();
for(u32bitj =0; _] = sigibytes; ++J)
output|[sig_bytes-j-1] = byte_at(j);

}

o the running time of this routine obviously depends on the
number of octets of the encoded integer

o — potential timing or power vulnerability!
o independent of encoding method
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A new potential Vulnerability i
Conversion

void Biglnt::binary_encode(byte output|[]) const

{

const u32bit sig_bytes = bytes();
for(u32bitj =0; _J = sigibytes; ++J)
output|[sig_bytes-j-1] = byte_at(j);

o the running time of this routine obviously depends on the
number of octets of the encoded integer

o — potential timing or power vulnerability!
o independent of encoding method

o the integer encoding routine in OpenSSL is equivalent
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A potential Vulnerability i
(MPI) Arithmetic

encoding routine

o We take a look back one step further from the integer
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A potential Vulnerability i
(MPI) Arithmetic

encoding routine

o We take a look back one step further from the integer

o with respect to conditional branching based on Y =0
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A potential Vulnerability in
(MPI) Arithmetic

encoding routine

o We take a look back one step further from the integer

o with respect to conditional branching based on Y =0

o We choose the PolarSSL Library for embedded systems
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A potential Vulnerability in th
(MPI) Arithmetic

encoding routine

o We take a look back one step further from the integer

o with respect to conditional branching based on Y =0

o We choose the PolarSSL Library for embedded systems

o We assume the last operation of the RSA computation to be
a modular reduction implemented as a division
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A potential Vulnerability in the
(MPI) Arithmetic

o We take a look back one step further from the integer
encoding routine

o with respect to conditional branching based on Y =0
o We choose the PolarSSL Library for embedded systems

o We assume the last operation of the RSA computation to be
a modular reduction implemented as a division

o in PolarSSL, the result of the division is copied with routine
mpi_copy ()
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typedef struct {

int n;

us *p;

} mpi;

int mpi_copy( mpi *X, const mpi *Z ) { // Z is src
int ret, i;
if( X ==2)
return( 0 );

for(i=2Z->n-1;i>0;i--)
if( Z->p[i]!I=0)
break;
i++; // i = # significant words in Z (src)
X->s = Z->s5;
MPI_CHK( mpi_grow( X, i) );
memset( X->p, 0, X->n * ciL );
memcpy( X->p, Z->p, i*cil );

}
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The mpi_copy() Routine in the PoIarSSL_

count
leading
zero

| modulus n |

)
1]
)

I
~)
=<
«
4
a

dest | I

eitheré or¢ l
dest |
l

[ .

set unused
words
to zero

H
0000...000 # ? Y

S—

P
'
'
[

H
copy %{ 2y dest |
significant L v
words
=] = = E =
" ‘1l
Falko Strenzke 16 /1 FlexSecure KOBILEIG"’"”




the running time on “Y = 07"

o the call to memcpy (potentially) offers a plain dependency of
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o the call to memcpy (potentially) offers a plain dependency of
the running time on “Y = 07"

o other routines in this function also show such dependencies
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o the call to memcpy (potentially) offers a plain dependency of
the running time on “Y = 07"

o other routines in this function also show such dependencies

o (also with opposed timing effects regarding Y = 0)
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The mpi_copy() Routine in the _

o the call to memcpy (potentially) offers a plain dependency of
the running time on “Y = 07"

o other routines in this function also show such dependencies
o (also with opposed timing effects regarding Y = 0)

o but depend on the history of source and destination MPI
operands
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The mpi_copy() Routine in the _

o the call to memcpy (potentially) offers a plain dependency of
the running time on “Y = 07"

o other routines in this function also show such dependencies
o (also with opposed timing effects regarding Y = 0)

o but depend on the history of source and destination MPI
operands

o — must be accounted for in a concrete implementation
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o RSA key size: bit length of the public modulus n
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Impact of the keysize on the_

o RSA key size: bit length of the public modulus n

o typical key sizes are multiples of 32 (powers of two)
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Impact of the keysize on the _

o RSA key size: bit length of the public modulus n

o typical key sizes are multiples of 32 (powers of two)

o with untypical keysizes the MPI related vulnerabilities are also
possible with 32-bit words
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Impact of the keysize on the MPI_

32-bit
word
byte / l \
\ ------ o " o= o "
. ' ' . '
. P s aw ' . '
N . L} L L] L}
...... Lo.....t Leveoocbonoaas!
Y: untypical key size modulus

standard key size modulus
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Impact of the keysize on the MPI r_

32-bit
word
byte / l \
\ ------ o " o= o "
. ' ' . '
. P s aw ' . '
N . L} L L] L}
...... Lo.....t Leveoocbonoaas!
Y: untypical key size modulus

standard key size modulus

-
=<

o for such untypical key sizes Y = 0 means that the number of
words in m is smaller by one compared to Y # 0
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o we have identified “unbalanced conditional branching” based
on a message property
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o we have identified “unbalanced conditional branching” based
on a message property

o this gives an onset for timing attacks (TA)
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On the relevance of the new p_

o we have identified “unbalanced conditional branching” based
on a message property

o this gives an onset for timing attacks (TA)

o and simple power analysis attacks (SPA) (refined TA revealing
the running time of individual subroutines)
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On the relevance of the new pot_

o we have identified “unbalanced conditional branching” based
on a message property

o this gives an onset for timing attacks (TA)

o and simple power analysis attacks (SPA) (refined TA revealing
the running time of individual subroutines)
o from the point of view of security engineering, any

implementation must analyzed with respect to these
vulnerabilities
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platform properties influencing the exploitability:
o source code
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platform properties influencing the exploitability:
o source code

o hardware
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platform properties influencing the exploitability
o source code

o hardware

o compiler
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platform properties influencing the exploitability:
o source code

o hardware

o compiler

o "accessibility” for an attacker (timing / power)
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platform properties influencing the exploitability:

o source code < solve problem here for TA
o hardware

o compiler

o “accessibility” for an attacker (timing / power)
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o Previously proposed countermeasures incurr security threats:
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Previously proposed Cou nter_

o Previously proposed countermeasures incurr security threats

o (1) if Y # 0, one shall used randomly generated dummy
values in the further OAEP decoding
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Previously proposed Cou nterme_

o Previously proposed countermeasures incurr security threats:

o (1) if Y # 0, one shall used randomly generated dummy
values in the further OAEP decoding

o — threat: random values turn an otherwise deterministic

processing indeterministic, which might be detected through
side channels by repeatedly decrypting the same ciphertext
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Previously proposed Cou ntermea_

o Previously proposed countermeasures incurr security threats:

o (1) if Y # 0, one shall used randomly generated dummy
values in the further OAEP decoding

o — threat: random values turn an otherwise deterministic
processing indeterministic, which might be detected through
side channels by repeatedly decrypting the same ciphertext

o (2)if Y #0, one shall set the m=0...0 in the further
OAEP decoding
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Previously proposed Cou ntermeasu_

©

Previously proposed countermeasures incurr security threats:

©

(1) if Y # 0, one shall used randomly generated dummy
values in the further OAEP decoding

o — threat: random values turn an otherwise deterministic
processing indeterministic, which might be detected through
side channels by repeatedly decrypting the same ciphertext

(2) if Y #0, one shall set the m =0...0 in the further
OAEP decoding

— threat: an “all zero” octet string is an extreme case of low
Hamming weight and might very likely be detected through
power analysis

o

©
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o We give a countermeasure against the MPI encoding routine:
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o We give a countermeasure against the MPI encoding routine:
o C++ source code
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Effective Countermeasures ag_

o We give a countermeasure against the MPI encoding routine
o C++ source code

o number of iterations in the encoding routine depends only on
the key size
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Effective Countermeasures ag_

o We give a countermeasure against the MPI encoding routine:
o C++ source code

o number of iterations in the encoding routine depends only on
the key size

o enforces Y = 0 already in the encoding routine
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Effective Countermeasures agai_

o We give a countermeasure against the MPI encoding routine:
o C++ source code

o number of iterations in the encoding routine depends only on
the key size

o enforces Y = 0 already in the encoding routine

o uses the volatile specifier to take away the compilers ability
to remove unnecessary operations
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Effective Countermeasures agains_

©

We give a countermeasure against the MPI encoding routine:
o C++ source code

o number of iterations in the encoding routine depends only on
the key size

o enforces Y = 0 already in the encoding routine

o uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

o use no conditional branching, not even comparison operators
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Effective Countermeasures agains_

©

We give a countermeasure against the MPI encoding routine:
o C++ source code

o number of iterations in the encoding routine depends only on
the key size

o enforces Y = 0 already in the encoding routine

o uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

o use no conditional branching, not even comparison operators

o but only logical operations
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Effective Countermeasures agains_

o We give a countermeasure against the MPI encoding routine:
o C++ source code

o number of iterations in the encoding routine depends only on
the key size

o enforces Y = 0 already in the encoding routine

o uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

o use no conditional branching, not even comparison operators
o but only logical operations

o logical masking replaces conditional branching
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o The last MPI routines in the decryption must “hide” the
number of words of m
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Outline of Countermeasures f_

o The last MPI routines in the decryption must “hide” the
number of words of m

o this can be done in the same manner as protecting the the
MPI encoding routine
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Conclusion

o concerning the OpenSSL countermeasure, it is obvious that

there is no common notion concerning the relevance of the
leakage of “small” timing differences
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Conclusion

o concerning the OpenSSL countermeasure, it is obvious that

there is no common notion concerning the relevance of the
leakage of “small” timing differences

o (compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)
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Conclusion

o concerning the OpenSSL countermeasure, it is obvious that

there is no common notion concerning the relevance of the
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o (compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)
o even though Manger's Attack is known for almost 10 years,

we could find new leakages about crucial properties of the
message
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o concerning the OpenSSL countermeasure, it is obvious that
there is no common notion concerning the relevance of the
leakage of “small” timing differences

o (compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)
o even though Manger's Attack is known for almost 10 years,

we could find new leakages about crucial properties of the
message

o in the MPI encoding routines
o in the MPI arithmetic (under certain circumstances)
o we propose countermeasures that ensure running times only
dependent on the key size for the potentially vulnerable
routines
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o Thank You!
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