
Manger’s Attack revisited

Falko Strenzke1

1 - FlexSecure GmbH, Germany,
strenzke@flexsecure.de

February 8, 2013

Manger’s Attack revisited Falko Strenzke 1 / 1

strenzke@flexsecure.de

Manger’s Attack

RSA-OAEP Encoding introduced to thwart Bleichenbacher’s
Attack against RSA with PKCS#1 v1.5 Encoding

The OAEP is a so called CCA2 conversion that secures a
cryptosystem against adaptive chosen ciphertext attacks

(any manipulation of an original ciphertext is detected during
the decryption)

CRYPTO 2001: James Manger introduces a Fault/Timing
Attack against straightforward implementations of RSA-OAEP

Manger’s Attack revisited Falko Strenzke 2 / 1

Manger’s Attack

RSA-OAEP Encoding introduced to thwart Bleichenbacher’s
Attack against RSA with PKCS#1 v1.5 Encoding

The OAEP is a so called CCA2 conversion that secures a
cryptosystem against adaptive chosen ciphertext attacks

(any manipulation of an original ciphertext is detected during
the decryption)

CRYPTO 2001: James Manger introduces a Fault/Timing
Attack against straightforward implementations of RSA-OAEP

Manger’s Attack revisited Falko Strenzke 2 / 1

Manger’s Attack

RSA-OAEP Encoding introduced to thwart Bleichenbacher’s
Attack against RSA with PKCS#1 v1.5 Encoding

The OAEP is a so called CCA2 conversion that secures a
cryptosystem against adaptive chosen ciphertext attacks

(any manipulation of an original ciphertext is detected during
the decryption)

CRYPTO 2001: James Manger introduces a Fault/Timing
Attack against straightforward implementations of RSA-OAEP

Manger’s Attack revisited Falko Strenzke 2 / 1

Manger’s Attack

RSA-OAEP Encoding introduced to thwart Bleichenbacher’s
Attack against RSA with PKCS#1 v1.5 Encoding

The OAEP is a so called CCA2 conversion that secures a
cryptosystem against adaptive chosen ciphertext attacks

(any manipulation of an original ciphertext is detected during
the decryption)

CRYPTO 2001: James Manger introduces a Fault/Timing
Attack against straightforward implementations of RSA-OAEP

Manger’s Attack revisited Falko Strenzke 2 / 1

RSA

public key: public exponent e and public modulus n

private key: private exponent d with xed = x mod n

encryption: z = me mod n

decryption: m = zd = med mod n

Manger’s Attack revisited Falko Strenzke 3 / 1

RSA

public key: public exponent e and public modulus n

private key: private exponent d with xed = x mod n

encryption: z = me mod n

decryption: m = zd = med mod n

Manger’s Attack revisited Falko Strenzke 3 / 1

RSA

public key: public exponent e and public modulus n

private key: private exponent d with xed = x mod n

encryption: z = me mod n

decryption: m = zd = med mod n

Manger’s Attack revisited Falko Strenzke 3 / 1

RSA

public key: public exponent e and public modulus n

private key: private exponent d with xed = x mod n

encryption: z = me mod n

decryption: m = zd = med mod n

Manger’s Attack revisited Falko Strenzke 3 / 1

OAEP Encoding

Figure: The RSA-OAEP decoding procedure. Here,
⊕

denotes XOR.

Manger’s Attack revisited Falko Strenzke 4 / 1

Manger’s Attack - the observable Error Condition

OAEP Decoding checks that Y = 0

(Y 6= 0 → “supernumerary octet”)

Y 6= 0 can be learned either through

a specific error message
shorter time to the error message compared to later OAEP
errors
(time difference might become huge if the attacker can
control the public parameters to be hashed within the OAEP
decoding routine)

Manger’s Attack revisited Falko Strenzke 5 / 1

Manger’s Attack - the observable Error Condition

OAEP Decoding checks that Y = 0

(Y 6= 0 → “supernumerary octet”)

Y 6= 0 can be learned either through

a specific error message
shorter time to the error message compared to later OAEP
errors
(time difference might become huge if the attacker can
control the public parameters to be hashed within the OAEP
decoding routine)

Manger’s Attack revisited Falko Strenzke 5 / 1

Manger’s Attack - the observable Error Condition

OAEP Decoding checks that Y = 0

(Y 6= 0 → “supernumerary octet”)

Y 6= 0 can be learned either through

a specific error message
shorter time to the error message compared to later OAEP
errors
(time difference might become huge if the attacker can
control the public parameters to be hashed within the OAEP
decoding routine)

Manger’s Attack revisited Falko Strenzke 5 / 1

Manger’s Attack - the observable Error Condition

OAEP Decoding checks that Y = 0

(Y 6= 0 → “supernumerary octet”)

Y 6= 0 can be learned either through

a specific error message
shorter time to the error message compared to later OAEP
errors
(time difference might become huge if the attacker can
control the public parameters to be hashed within the OAEP
decoding routine)

Manger’s Attack revisited Falko Strenzke 5 / 1

Manger’s Attack - the observable Error Condition

OAEP Decoding checks that Y = 0

(Y 6= 0 → “supernumerary octet”)

Y 6= 0 can be learned either through

a specific error message
shorter time to the error message compared to later OAEP
errors
(time difference might become huge if the attacker can
control the public parameters to be hashed within the OAEP
decoding routine)

Manger’s Attack revisited Falko Strenzke 5 / 1

Manger’s Attack - the observable Error Condition

OAEP Decoding checks that Y = 0

(Y 6= 0 → “supernumerary octet”)

Y 6= 0 can be learned either through

a specific error message
shorter time to the error message compared to later OAEP
errors
(time difference might become huge if the attacker can
control the public parameters to be hashed within the OAEP
decoding routine)

Manger’s Attack revisited Falko Strenzke 5 / 1

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Manger’s Attack revisited Falko Strenzke 6 / 1

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Manger’s Attack revisited Falko Strenzke 6 / 1

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Manger’s Attack revisited Falko Strenzke 6 / 1

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Manger’s Attack revisited Falko Strenzke 6 / 1

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Manger’s Attack revisited Falko Strenzke 6 / 1

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Manger’s Attack revisited Falko Strenzke 6 / 1

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Manger’s Attack revisited Falko Strenzke 6 / 1

Manger’s Attack revisited Falko Strenzke 7 / 1

Analysis of the OpenSSL Library

lzero = num - flen;
if (lzero < 0)
{

/* signalling this error immediately after detection might allow for
* side-channel attacks (e.g. timing if ’plen’ is huge – cf. James
* H. Manger, ”A Chosen Ciphertext Attack on RSA Optimal
* Asymmetric Encryption Padding (OAEP) [...]”, CRYPTO 2001),
* so we use a ’bad’ flag */
bad = 1;
lzero = 0;
flen = num; /* don’t overflow the memcpy to padded from */
}
. . .
if (memcmp(db, phash, SHA DIGEST LENGTH) != 0 || bad)

goto decoding err;

Manger’s Attack revisited Falko Strenzke 8 / 1

Analysis of the Botan Library

. . .
key length /= 8;
if(in length > key length)

throw Decoding Error(”Invalid EME1 encoding”);
SecureVector<byte> tmp(key length);
tmp.copy(key length - in length, in, in length);
mgf->mask(tmp + HASH LENGTH, tmp.size() - HASH LENGTH, tmp,
HASH LENGTH);
mgf->mask(tmp, HASH LENGTH, tmp + HASH LENGTH, tmp.size() -
HASH LENGTH);
for(u32bit j = 0; j != Phash.size(); ++j)

if(tmp[j+HASH LENGTH] != Phash[j])
throw Decoding Error(”Invalid EME1 encoding”);

. . .

Manger’s Attack revisited Falko Strenzke 9 / 1

Analysis of OpenSSL and Botan

the strongest form of Manger’s Attack (exploiting the running
time of hash computation of huge Parameters) is not possible
for either library

OpenSSL did not respond to the report of the potential
vulnerability

The Botan main developer released a patch after the
vulnerability was reported to him

Manger’s Attack revisited Falko Strenzke 10 / 1

Analysis of OpenSSL and Botan

the strongest form of Manger’s Attack (exploiting the running
time of hash computation of huge Parameters) is not possible
for either library

OpenSSL did not respond to the report of the potential
vulnerability

The Botan main developer released a patch after the
vulnerability was reported to him

Manger’s Attack revisited Falko Strenzke 10 / 1

Analysis of OpenSSL and Botan

the strongest form of Manger’s Attack (exploiting the running
time of hash computation of huge Parameters) is not possible
for either library

OpenSSL did not respond to the report of the potential
vulnerability

The Botan main developer released a patch after the
vulnerability was reported to him

Manger’s Attack revisited Falko Strenzke 10 / 1

Manger’s Attack revisited Falko Strenzke 11 / 1

A new potential Vulnerability in the Integer to Octet String
Conversion

void BigInt::binary encode(byte output[]) const
{

const u32bit sig bytes = bytes();
for(u32bit j = 0; j != sig bytes; ++j)

output[sig bytes-j-1] = byte at(j);

}
the running time of this routine obviously depends on the
number of octets of the encoded integer

→ potential timing or power vulnerability!

independent of encoding method

the integer encoding routine in OpenSSL is equivalent

Manger’s Attack revisited Falko Strenzke 12 / 1

A new potential Vulnerability in the Integer to Octet String
Conversion

void BigInt::binary encode(byte output[]) const
{

const u32bit sig bytes = bytes();
for(u32bit j = 0; j != sig bytes; ++j)

output[sig bytes-j-1] = byte at(j);

}
the running time of this routine obviously depends on the
number of octets of the encoded integer

→ potential timing or power vulnerability!

independent of encoding method

the integer encoding routine in OpenSSL is equivalent

Manger’s Attack revisited Falko Strenzke 12 / 1

A new potential Vulnerability in the Integer to Octet String
Conversion

void BigInt::binary encode(byte output[]) const
{

const u32bit sig bytes = bytes();
for(u32bit j = 0; j != sig bytes; ++j)

output[sig bytes-j-1] = byte at(j);

}
the running time of this routine obviously depends on the
number of octets of the encoded integer

→ potential timing or power vulnerability!

independent of encoding method

the integer encoding routine in OpenSSL is equivalent

Manger’s Attack revisited Falko Strenzke 12 / 1

A new potential Vulnerability in the Integer to Octet String
Conversion

void BigInt::binary encode(byte output[]) const
{

const u32bit sig bytes = bytes();
for(u32bit j = 0; j != sig bytes; ++j)

output[sig bytes-j-1] = byte at(j);

}
the running time of this routine obviously depends on the
number of octets of the encoded integer

→ potential timing or power vulnerability!

independent of encoding method

the integer encoding routine in OpenSSL is equivalent

Manger’s Attack revisited Falko Strenzke 12 / 1

Manger’s Attack revisited Falko Strenzke 13 / 1

A potential Vulnerability in the Multi-Precision Integer
(MPI) Arithmetic

We take a look back one step further from the integer
encoding routine

with respect to conditional branching based on Y = 0

We choose the PolarSSL Library for embedded systems

We assume the last operation of the RSA computation to be
a modular reduction implemented as a division

in PolarSSL, the result of the division is copied with routine
mpi copy()

Manger’s Attack revisited Falko Strenzke 14 / 1

A potential Vulnerability in the Multi-Precision Integer
(MPI) Arithmetic

We take a look back one step further from the integer
encoding routine

with respect to conditional branching based on Y = 0

We choose the PolarSSL Library for embedded systems

We assume the last operation of the RSA computation to be
a modular reduction implemented as a division

in PolarSSL, the result of the division is copied with routine
mpi copy()

Manger’s Attack revisited Falko Strenzke 14 / 1

A potential Vulnerability in the Multi-Precision Integer
(MPI) Arithmetic

We take a look back one step further from the integer
encoding routine

with respect to conditional branching based on Y = 0

We choose the PolarSSL Library for embedded systems

We assume the last operation of the RSA computation to be
a modular reduction implemented as a division

in PolarSSL, the result of the division is copied with routine
mpi copy()

Manger’s Attack revisited Falko Strenzke 14 / 1

A potential Vulnerability in the Multi-Precision Integer
(MPI) Arithmetic

We take a look back one step further from the integer
encoding routine

with respect to conditional branching based on Y = 0

We choose the PolarSSL Library for embedded systems

We assume the last operation of the RSA computation to be
a modular reduction implemented as a division

in PolarSSL, the result of the division is copied with routine
mpi copy()

Manger’s Attack revisited Falko Strenzke 14 / 1

A potential Vulnerability in the Multi-Precision Integer
(MPI) Arithmetic

We take a look back one step further from the integer
encoding routine

with respect to conditional branching based on Y = 0

We choose the PolarSSL Library for embedded systems

We assume the last operation of the RSA computation to be
a modular reduction implemented as a division

in PolarSSL, the result of the division is copied with routine
mpi copy()

Manger’s Attack revisited Falko Strenzke 14 / 1

The mpi copy() Routine in the PolarSSL Library

typedef struct {
int n;
U8 *p;
} mpi;

int mpi copy(mpi *X, const mpi *Z) { // Z is src
int ret, i;
if(X == Z)

return(0);
for(i = Z->n - 1; i > 0; i - -)

if(Z->p[i] != 0)
break;

i++; // i = # significant words in Z (src)
X->s = Z->s;
MPI CHK(mpi grow(X, i));
memset(X->p, 0, X->n * ciL);
memcpy(X->p, Z->p, i* ciL);
. . .

}

Manger’s Attack revisited Falko Strenzke 15 / 1

The mpi copy() Routine in the PolarSSL Library

Manger’s Attack revisited Falko Strenzke 16 / 1

The mpi copy() Routine in the PolarSSL Library

the call to memcpy (potentially) offers a plain dependency of
the running time on “Y = 0?”

other routines in this function also show such dependencies

(also with opposed timing effects regarding Y = 0)

but depend on the history of source and destination MPI
operands

→ must be accounted for in a concrete implementation

Manger’s Attack revisited Falko Strenzke 17 / 1

The mpi copy() Routine in the PolarSSL Library

the call to memcpy (potentially) offers a plain dependency of
the running time on “Y = 0?”

other routines in this function also show such dependencies

(also with opposed timing effects regarding Y = 0)

but depend on the history of source and destination MPI
operands

→ must be accounted for in a concrete implementation

Manger’s Attack revisited Falko Strenzke 17 / 1

The mpi copy() Routine in the PolarSSL Library

the call to memcpy (potentially) offers a plain dependency of
the running time on “Y = 0?”

other routines in this function also show such dependencies

(also with opposed timing effects regarding Y = 0)

but depend on the history of source and destination MPI
operands

→ must be accounted for in a concrete implementation

Manger’s Attack revisited Falko Strenzke 17 / 1

The mpi copy() Routine in the PolarSSL Library

the call to memcpy (potentially) offers a plain dependency of
the running time on “Y = 0?”

other routines in this function also show such dependencies

(also with opposed timing effects regarding Y = 0)

but depend on the history of source and destination MPI
operands

→ must be accounted for in a concrete implementation

Manger’s Attack revisited Falko Strenzke 17 / 1

The mpi copy() Routine in the PolarSSL Library

the call to memcpy (potentially) offers a plain dependency of
the running time on “Y = 0?”

other routines in this function also show such dependencies

(also with opposed timing effects regarding Y = 0)

but depend on the history of source and destination MPI
operands

→ must be accounted for in a concrete implementation

Manger’s Attack revisited Falko Strenzke 17 / 1

Impact of the keysize on the MPI related Vulnerability

RSA key size: bit length of the public modulus n

typical key sizes are multiples of 32 (powers of two)

with untypical keysizes the MPI related vulnerabilities are also
possible with 32-bit words

Manger’s Attack revisited Falko Strenzke 18 / 1

Impact of the keysize on the MPI related Vulnerability

RSA key size: bit length of the public modulus n

typical key sizes are multiples of 32 (powers of two)

with untypical keysizes the MPI related vulnerabilities are also
possible with 32-bit words

Manger’s Attack revisited Falko Strenzke 18 / 1

Impact of the keysize on the MPI related Vulnerability

RSA key size: bit length of the public modulus n

typical key sizes are multiples of 32 (powers of two)

with untypical keysizes the MPI related vulnerabilities are also
possible with 32-bit words

Manger’s Attack revisited Falko Strenzke 18 / 1

Impact of the keysize on the MPI related Vulnerability

for such untypical key sizes Y = 0 means that the number of
words in m is smaller by one compared to Y 6= 0

Manger’s Attack revisited Falko Strenzke 19 / 1

Impact of the keysize on the MPI related Vulnerability

for such untypical key sizes Y = 0 means that the number of
words in m is smaller by one compared to Y 6= 0

Manger’s Attack revisited Falko Strenzke 19 / 1

Manger’s Attack revisited Falko Strenzke 20 / 1

On the relevance of the new potential Vulnerabilities

we have identified “unbalanced conditional branching” based
on a message property

this gives an onset for timing attacks (TA)

and simple power analysis attacks (SPA) (refined TA revealing
the running time of individual subroutines)

from the point of view of security engineering, any
implementation must analyzed with respect to these
vulnerabilities

Manger’s Attack revisited Falko Strenzke 21 / 1

On the relevance of the new potential Vulnerabilities

we have identified “unbalanced conditional branching” based
on a message property

this gives an onset for timing attacks (TA)

and simple power analysis attacks (SPA) (refined TA revealing
the running time of individual subroutines)

from the point of view of security engineering, any
implementation must analyzed with respect to these
vulnerabilities

Manger’s Attack revisited Falko Strenzke 21 / 1

On the relevance of the new potential Vulnerabilities

we have identified “unbalanced conditional branching” based
on a message property

this gives an onset for timing attacks (TA)

and simple power analysis attacks (SPA) (refined TA revealing
the running time of individual subroutines)

from the point of view of security engineering, any
implementation must analyzed with respect to these
vulnerabilities

Manger’s Attack revisited Falko Strenzke 21 / 1

On the relevance of the new potential Vulnerabilities

we have identified “unbalanced conditional branching” based
on a message property

this gives an onset for timing attacks (TA)

and simple power analysis attacks (SPA) (refined TA revealing
the running time of individual subroutines)

from the point of view of security engineering, any
implementation must analyzed with respect to these
vulnerabilities

Manger’s Attack revisited Falko Strenzke 21 / 1

On the relevance of these potential Vulnerabilities

platform properties influencing the exploitability:

source code

hardware

compiler

“accessibility” for an attacker (timing / power)

Manger’s Attack revisited Falko Strenzke 22 / 1

On the relevance of these potential Vulnerabilities

platform properties influencing the exploitability:

source code

hardware

compiler

“accessibility” for an attacker (timing / power)

Manger’s Attack revisited Falko Strenzke 22 / 1

On the relevance of these potential Vulnerabilities

platform properties influencing the exploitability:

source code

hardware

compiler

“accessibility” for an attacker (timing / power)

Manger’s Attack revisited Falko Strenzke 22 / 1

On the relevance of these potential Vulnerabilities

platform properties influencing the exploitability:

source code

hardware

compiler

“accessibility” for an attacker (timing / power)

Manger’s Attack revisited Falko Strenzke 22 / 1

On the relevance of these potential Vulnerabilities

platform properties influencing the exploitability:

source code ← solve problem here for TA

hardware

compiler

“accessibility” for an attacker (timing / power)

Manger’s Attack revisited Falko Strenzke 22 / 1

Manger’s Attack revisited Falko Strenzke 23 / 1

Previously proposed Countermeasures

Previously proposed countermeasures incurr security threats:

(1) if Y 6= 0, one shall used randomly generated dummy
values in the further OAEP decoding

→ threat: random values turn an otherwise deterministic
processing indeterministic, which might be detected through
side channels by repeatedly decrypting the same ciphertext

(2) if Y 6= 0, one shall set the m = 0 . . . 0 in the further
OAEP decoding

→ threat: an “all zero” octet string is an extreme case of low
Hamming weight and might very likely be detected through
power analysis

Manger’s Attack revisited Falko Strenzke 24 / 1

Previously proposed Countermeasures

Previously proposed countermeasures incurr security threats:

(1) if Y 6= 0, one shall used randomly generated dummy
values in the further OAEP decoding

→ threat: random values turn an otherwise deterministic
processing indeterministic, which might be detected through
side channels by repeatedly decrypting the same ciphertext

(2) if Y 6= 0, one shall set the m = 0 . . . 0 in the further
OAEP decoding

→ threat: an “all zero” octet string is an extreme case of low
Hamming weight and might very likely be detected through
power analysis

Manger’s Attack revisited Falko Strenzke 24 / 1

Previously proposed Countermeasures

Previously proposed countermeasures incurr security threats:

(1) if Y 6= 0, one shall used randomly generated dummy
values in the further OAEP decoding

→ threat: random values turn an otherwise deterministic
processing indeterministic, which might be detected through
side channels by repeatedly decrypting the same ciphertext

(2) if Y 6= 0, one shall set the m = 0 . . . 0 in the further
OAEP decoding

→ threat: an “all zero” octet string is an extreme case of low
Hamming weight and might very likely be detected through
power analysis

Manger’s Attack revisited Falko Strenzke 24 / 1

Previously proposed Countermeasures

Previously proposed countermeasures incurr security threats:

(1) if Y 6= 0, one shall used randomly generated dummy
values in the further OAEP decoding

→ threat: random values turn an otherwise deterministic
processing indeterministic, which might be detected through
side channels by repeatedly decrypting the same ciphertext

(2) if Y 6= 0, one shall set the m = 0 . . . 0 in the further
OAEP decoding

→ threat: an “all zero” octet string is an extreme case of low
Hamming weight and might very likely be detected through
power analysis

Manger’s Attack revisited Falko Strenzke 24 / 1

Previously proposed Countermeasures

Previously proposed countermeasures incurr security threats:

(1) if Y 6= 0, one shall used randomly generated dummy
values in the further OAEP decoding

→ threat: random values turn an otherwise deterministic
processing indeterministic, which might be detected through
side channels by repeatedly decrypting the same ciphertext

(2) if Y 6= 0, one shall set the m = 0 . . . 0 in the further
OAEP decoding

→ threat: an “all zero” octet string is an extreme case of low
Hamming weight and might very likely be detected through
power analysis

Manger’s Attack revisited Falko Strenzke 24 / 1

Effective Countermeasures against Timing Attacks

We give a countermeasure against the MPI encoding routine:

C++ source code

number of iterations in the encoding routine depends only on
the key size

enforces Y = 0 already in the encoding routine

uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

use no conditional branching, not even comparison operators

but only logical operations

logical masking replaces conditional branching

Manger’s Attack revisited Falko Strenzke 25 / 1

Effective Countermeasures against Timing Attacks

We give a countermeasure against the MPI encoding routine:

C++ source code

number of iterations in the encoding routine depends only on
the key size

enforces Y = 0 already in the encoding routine

uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

use no conditional branching, not even comparison operators

but only logical operations

logical masking replaces conditional branching

Manger’s Attack revisited Falko Strenzke 25 / 1

Effective Countermeasures against Timing Attacks

We give a countermeasure against the MPI encoding routine:

C++ source code

number of iterations in the encoding routine depends only on
the key size

enforces Y = 0 already in the encoding routine

uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

use no conditional branching, not even comparison operators

but only logical operations

logical masking replaces conditional branching

Manger’s Attack revisited Falko Strenzke 25 / 1

Effective Countermeasures against Timing Attacks

We give a countermeasure against the MPI encoding routine:

C++ source code

number of iterations in the encoding routine depends only on
the key size

enforces Y = 0 already in the encoding routine

uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

use no conditional branching, not even comparison operators

but only logical operations

logical masking replaces conditional branching

Manger’s Attack revisited Falko Strenzke 25 / 1

Effective Countermeasures against Timing Attacks

We give a countermeasure against the MPI encoding routine:

C++ source code

number of iterations in the encoding routine depends only on
the key size

enforces Y = 0 already in the encoding routine

uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

use no conditional branching, not even comparison operators

but only logical operations

logical masking replaces conditional branching

Manger’s Attack revisited Falko Strenzke 25 / 1

Effective Countermeasures against Timing Attacks

We give a countermeasure against the MPI encoding routine:

C++ source code

number of iterations in the encoding routine depends only on
the key size

enforces Y = 0 already in the encoding routine

uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

use no conditional branching, not even comparison operators

but only logical operations

logical masking replaces conditional branching

Manger’s Attack revisited Falko Strenzke 25 / 1

Effective Countermeasures against Timing Attacks

We give a countermeasure against the MPI encoding routine:

C++ source code

number of iterations in the encoding routine depends only on
the key size

enforces Y = 0 already in the encoding routine

uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

use no conditional branching, not even comparison operators

but only logical operations

logical masking replaces conditional branching

Manger’s Attack revisited Falko Strenzke 25 / 1

Effective Countermeasures against Timing Attacks

We give a countermeasure against the MPI encoding routine:

C++ source code

number of iterations in the encoding routine depends only on
the key size

enforces Y = 0 already in the encoding routine

uses the volatile specifier to take away the compilers ability
to remove unnecessary operations

use no conditional branching, not even comparison operators

but only logical operations

logical masking replaces conditional branching

Manger’s Attack revisited Falko Strenzke 25 / 1

Outline of Countermeasures for the MPI Arithmetic

The last MPI routines in the decryption must “hide” the
number of words of m

this can be done in the same manner as protecting the the
MPI encoding routine

Manger’s Attack revisited Falko Strenzke 26 / 1

Outline of Countermeasures for the MPI Arithmetic

The last MPI routines in the decryption must “hide” the
number of words of m

this can be done in the same manner as protecting the the
MPI encoding routine

Manger’s Attack revisited Falko Strenzke 26 / 1

Manger’s Attack revisited Falko Strenzke 27 / 1

Conclusion

concerning the OpenSSL countermeasure, it is obvious that
there is no common notion concerning the relevance of the
leakage of “small” timing differences

(compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)

even though Manger’s Attack is known for almost 10 years,
we could find new leakages about crucial properties of the
message

in the MPI encoding routines
in the MPI arithmetic (under certain circumstances)

we propose countermeasures that ensure running times only
dependent on the key size for the potentially vulnerable
routines

Manger’s Attack revisited Falko Strenzke 28 / 1

Conclusion

concerning the OpenSSL countermeasure, it is obvious that
there is no common notion concerning the relevance of the
leakage of “small” timing differences

(compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)

even though Manger’s Attack is known for almost 10 years,
we could find new leakages about crucial properties of the
message

in the MPI encoding routines
in the MPI arithmetic (under certain circumstances)

we propose countermeasures that ensure running times only
dependent on the key size for the potentially vulnerable
routines

Manger’s Attack revisited Falko Strenzke 28 / 1

Conclusion

concerning the OpenSSL countermeasure, it is obvious that
there is no common notion concerning the relevance of the
leakage of “small” timing differences

(compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)

even though Manger’s Attack is known for almost 10 years,
we could find new leakages about crucial properties of the
message

in the MPI encoding routines
in the MPI arithmetic (under certain circumstances)

we propose countermeasures that ensure running times only
dependent on the key size for the potentially vulnerable
routines

Manger’s Attack revisited Falko Strenzke 28 / 1

Conclusion

concerning the OpenSSL countermeasure, it is obvious that
there is no common notion concerning the relevance of the
leakage of “small” timing differences

(compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)

even though Manger’s Attack is known for almost 10 years,
we could find new leakages about crucial properties of the
message

in the MPI encoding routines
in the MPI arithmetic (under certain circumstances)

we propose countermeasures that ensure running times only
dependent on the key size for the potentially vulnerable
routines

Manger’s Attack revisited Falko Strenzke 28 / 1

Conclusion

concerning the OpenSSL countermeasure, it is obvious that
there is no common notion concerning the relevance of the
leakage of “small” timing differences

(compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)

even though Manger’s Attack is known for almost 10 years,
we could find new leakages about crucial properties of the
message

in the MPI encoding routines
in the MPI arithmetic (under certain circumstances)

we propose countermeasures that ensure running times only
dependent on the key size for the potentially vulnerable
routines

Manger’s Attack revisited Falko Strenzke 28 / 1

Conclusion

concerning the OpenSSL countermeasure, it is obvious that
there is no common notion concerning the relevance of the
leakage of “small” timing differences

(compare with cache-timing attacks against AES, where
minimal timing differences are regarded as critical)

even though Manger’s Attack is known for almost 10 years,
we could find new leakages about crucial properties of the
message

in the MPI encoding routines
in the MPI arithmetic (under certain circumstances)

we propose countermeasures that ensure running times only
dependent on the key size for the potentially vulnerable
routines

Manger’s Attack revisited Falko Strenzke 28 / 1

Thank You!

Manger’s Attack revisited Falko Strenzke 29 / 1

	Introduction
	Analysis of Open Source Libraries with respect to Countermeasures
	A new potential Vulnerability in the Integer to Octet String Conversion
	A new potential Vulnerability in the Multi-Precision Integer Arithmetic
	On the relevance of the new potential Vulnerabilities
	Countermeasures
	Conclusion

