
Efficiency and Implementation Security of
Code-based Cryptosystems
PhD Thesis by Falko Strenzke

Falko Strenzke

Cryptography and Computeralgebra, Department of Computer Science,
Technische Universität Darmstadt, Germany,

fstrenzke@cryptosource.de

November 11, 2013

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 1 / 37

fstrenzke@cryptosource.de

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer 20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer 20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer 20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer 20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer 20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer 20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer 20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer 20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer 20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer

20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer

20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer 20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer 20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer 20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Public Key Encryption

Alice Bob

public key (p)

c = Ep(m)

secret key (s)

m = Ds(c)

today: classical computer 20??: quantum computer

RSA, ElGamal, etc.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 2 / 37

Code-based Cryptosystems

need for cryptosystems in a post-quantum world

lattice-based, multivariate, . . .

code-based cryptosystems

McEliece scheme proposed in 1976
still regarded secure
fast encryption and decryption
large public key
Niederreiter scheme very similar

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 3 / 37

Code-based Cryptosystems

need for cryptosystems in a post-quantum world

lattice-based, multivariate, . . .

code-based cryptosystems

McEliece scheme proposed in 1976
still regarded secure
fast encryption and decryption
large public key
Niederreiter scheme very similar

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 3 / 37

Code-based Cryptosystems

need for cryptosystems in a post-quantum world

lattice-based, multivariate, . . .

code-based cryptosystems

McEliece scheme proposed in 1976
still regarded secure
fast encryption and decryption
large public key
Niederreiter scheme very similar

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 3 / 37

Code-based Cryptosystems

need for cryptosystems in a post-quantum world

lattice-based, multivariate, . . .

code-based cryptosystems

McEliece scheme proposed in 1976
still regarded secure
fast encryption and decryption
large public key
Niederreiter scheme very similar

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 3 / 37

Code-based Cryptosystems

need for cryptosystems in a post-quantum world

lattice-based, multivariate, . . .

code-based cryptosystems

McEliece scheme proposed in 1976
still regarded secure
fast encryption and decryption
large public key
Niederreiter scheme very similar

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 3 / 37

Code-based Cryptosystems

need for cryptosystems in a post-quantum world

lattice-based, multivariate, . . .

code-based cryptosystems

McEliece scheme proposed in 1976
still regarded secure
fast encryption and decryption
large public key
Niederreiter scheme very similar

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 3 / 37

Code-based Cryptosystems

need for cryptosystems in a post-quantum world

lattice-based, multivariate, . . .

code-based cryptosystems

McEliece scheme proposed in 1976
still regarded secure
fast encryption and decryption
large public key
Niederreiter scheme very similar

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 3 / 37

Code-based Cryptosystems

need for cryptosystems in a post-quantum world

lattice-based, multivariate, . . .

code-based cryptosystems

McEliece scheme proposed in 1976
still regarded secure
fast encryption and decryption
large public key
Niederreiter scheme very similar

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 3 / 37

Outline

Preliminaries

Error Correcting Codes
Goppa Codes
McEliece scheme

Encryption
Decryption (syndrome decoding)

Challenges of code-based cryptosystems

Contributions

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 4 / 37

Outline

Preliminaries

Error Correcting Codes
Goppa Codes
McEliece scheme

Encryption
Decryption (syndrome decoding)

Challenges of code-based cryptosystems

Contributions

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 4 / 37

Outline

Preliminaries

Error Correcting Codes
Goppa Codes
McEliece scheme

Encryption
Decryption (syndrome decoding)

Challenges of code-based cryptosystems

Contributions

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 4 / 37

Outline

Preliminaries

Error Correcting Codes
Goppa Codes
McEliece scheme

Encryption
Decryption (syndrome decoding)

Challenges of code-based cryptosystems

Contributions

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 4 / 37

Outline

Preliminaries

Error Correcting Codes
Goppa Codes
McEliece scheme

Encryption
Decryption (syndrome decoding)

Challenges of code-based cryptosystems

Contributions

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 4 / 37

Outline

Preliminaries

Error Correcting Codes
Goppa Codes
McEliece scheme

Encryption
Decryption (syndrome decoding)

Challenges of code-based cryptosystems

Contributions

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 4 / 37

Outline

Preliminaries

Error Correcting Codes
Goppa Codes
McEliece scheme

Encryption
Decryption (syndrome decoding)

Challenges of code-based cryptosystems

Contributions

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 4 / 37

Outline

Preliminaries

Error Correcting Codes
Goppa Codes
McEliece scheme

Encryption
Decryption (syndrome decoding)

Challenges of code-based cryptosystems

Contributions

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 4 / 37

Error Correcting Codes

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 5 / 37

Goppa Codes

Parameters of a Goppa Code

irreducible polynomial g(Y) ∈ F2m [Y] of degree t (the Goppa
Polynomial)
support Γ = (α0, α1, . . . , αn−1), where αi are pairwise distinct
elements of F2m

Properties of the Code

the code has length n ≤ 2m (code word length) ,
dimension k = n −mt (message length) and
can correct up to t errors.
a parity check matrix H, where cH> = 0 if c ∈ C
example for secure parameters: n = 2048, t = 50 for 100 bit
security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 6 / 37

Goppa Codes

Parameters of a Goppa Code

irreducible polynomial g(Y) ∈ F2m [Y] of degree t (the Goppa
Polynomial)
support Γ = (α0, α1, . . . , αn−1), where αi are pairwise distinct
elements of F2m

Properties of the Code

the code has length n ≤ 2m (code word length) ,
dimension k = n −mt (message length) and
can correct up to t errors.
a parity check matrix H, where cH> = 0 if c ∈ C
example for secure parameters: n = 2048, t = 50 for 100 bit
security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 6 / 37

Goppa Codes

Parameters of a Goppa Code

irreducible polynomial g(Y) ∈ F2m [Y] of degree t (the Goppa
Polynomial)
support Γ = (α0, α1, . . . , αn−1), where αi are pairwise distinct
elements of F2m

Properties of the Code

the code has length n ≤ 2m (code word length) ,
dimension k = n −mt (message length) and
can correct up to t errors.
a parity check matrix H, where cH> = 0 if c ∈ C
example for secure parameters: n = 2048, t = 50 for 100 bit
security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 6 / 37

Goppa Codes

Parameters of a Goppa Code

irreducible polynomial g(Y) ∈ F2m [Y] of degree t (the Goppa
Polynomial)
support Γ = (α0, α1, . . . , αn−1), where αi are pairwise distinct
elements of F2m

Properties of the Code

the code has length n ≤ 2m (code word length) ,
dimension k = n −mt (message length) and
can correct up to t errors.
a parity check matrix H, where cH> = 0 if c ∈ C
example for secure parameters: n = 2048, t = 50 for 100 bit
security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 6 / 37

Goppa Codes

Parameters of a Goppa Code

irreducible polynomial g(Y) ∈ F2m [Y] of degree t (the Goppa
Polynomial)
support Γ = (α0, α1, . . . , αn−1), where αi are pairwise distinct
elements of F2m

Properties of the Code

the code has length n ≤ 2m (code word length) ,
dimension k = n −mt (message length) and
can correct up to t errors.
a parity check matrix H, where cH> = 0 if c ∈ C
example for secure parameters: n = 2048, t = 50 for 100 bit
security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 6 / 37

Goppa Codes

Parameters of a Goppa Code

irreducible polynomial g(Y) ∈ F2m [Y] of degree t (the Goppa
Polynomial)
support Γ = (α0, α1, . . . , αn−1), where αi are pairwise distinct
elements of F2m

Properties of the Code

the code has length n ≤ 2m (code word length) ,
dimension k = n −mt (message length) and
can correct up to t errors.
a parity check matrix H, where cH> = 0 if c ∈ C
example for secure parameters: n = 2048, t = 50 for 100 bit
security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 6 / 37

Goppa Codes

Parameters of a Goppa Code

irreducible polynomial g(Y) ∈ F2m [Y] of degree t (the Goppa
Polynomial)
support Γ = (α0, α1, . . . , αn−1), where αi are pairwise distinct
elements of F2m

Properties of the Code

the code has length n ≤ 2m (code word length) ,
dimension k = n −mt (message length) and
can correct up to t errors.
a parity check matrix H, where cH> = 0 if c ∈ C
example for secure parameters: n = 2048, t = 50 for 100 bit
security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 6 / 37

Goppa Codes

Parameters of a Goppa Code

irreducible polynomial g(Y) ∈ F2m [Y] of degree t (the Goppa
Polynomial)
support Γ = (α0, α1, . . . , αn−1), where αi are pairwise distinct
elements of F2m

Properties of the Code

the code has length n ≤ 2m (code word length) ,
dimension k = n −mt (message length) and
can correct up to t errors.
a parity check matrix H, where cH> = 0 if c ∈ C
example for secure parameters: n = 2048, t = 50 for 100 bit
security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 6 / 37

Goppa Codes

Parameters of a Goppa Code

irreducible polynomial g(Y) ∈ F2m [Y] of degree t (the Goppa
Polynomial)
support Γ = (α0, α1, . . . , αn−1), where αi are pairwise distinct
elements of F2m

Properties of the Code

the code has length n ≤ 2m (code word length) ,
dimension k = n −mt (message length) and
can correct up to t errors.
a parity check matrix H, where cH> = 0 if c ∈ C
example for secure parameters: n = 2048, t = 50 for 100 bit
security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 6 / 37

The McEliece PKC

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 7 / 37

Syndrome Decoding: Patterson Algorithm

secret key: g(Y), Γ = (α0, α1, . . . , αn−1)

input: distorted codeword ~e ⊕ ~c
output: error vector ~e ∈ Fn

2m

S(Y)← (~e ⊕ ~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · ,Y , 1

)>
U(Y)← S−1 mod g(Y) // by EEA

τ(Y)←
√
U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y)) //β(Y)τ(Y) ≡ α(Y) mod g(Y)

σ(Y)← α2(Y) + Y β2(Y) // σ(Y) =
∏t−1

i=0 (αfi − Y)

ei ← 1 iff σ(αi) = 0 // root finding

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 8 / 37

Syndrome Decoding: Patterson Algorithm

secret key: g(Y), Γ = (α0, α1, . . . , αn−1)

input: distorted codeword ~e ⊕ ~c
output: error vector ~e ∈ Fn

2m

S(Y)← (~e ⊕ ~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · ,Y , 1

)>
U(Y)← S−1 mod g(Y) // by EEA

τ(Y)←
√
U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y)) //β(Y)τ(Y) ≡ α(Y) mod g(Y)

σ(Y)← α2(Y) + Y β2(Y) // σ(Y) =
∏t−1

i=0 (αfi − Y)

ei ← 1 iff σ(αi) = 0 // root finding

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 8 / 37

Syndrome Decoding: Patterson Algorithm

secret key: g(Y), Γ = (α0, α1, . . . , αn−1)

input: distorted codeword ~e ⊕ ~c
output: error vector ~e ∈ Fn

2m

S(Y)← (~e ⊕ ~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · ,Y , 1

)>
U(Y)← S−1 mod g(Y) // by EEA

τ(Y)←
√
U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y)) //β(Y)τ(Y) ≡ α(Y) mod g(Y)

σ(Y)← α2(Y) + Y β2(Y) // σ(Y) =
∏t−1

i=0 (αfi − Y)

ei ← 1 iff σ(αi) = 0 // root finding

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 8 / 37

Syndrome Decoding: Patterson Algorithm

secret key: g(Y), Γ = (α0, α1, . . . , αn−1)

input: distorted codeword ~e ⊕ ~c
output: error vector ~e ∈ Fn

2m

S(Y)← (~e ⊕ ~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · ,Y , 1

)>
U(Y)← S−1 mod g(Y) // by EEA

τ(Y)←
√
U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y)) //β(Y)τ(Y) ≡ α(Y) mod g(Y)

σ(Y)← α2(Y) + Y β2(Y) // σ(Y) =
∏t−1

i=0 (αfi − Y)

ei ← 1 iff σ(αi) = 0 // root finding

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 8 / 37

Syndrome Decoding: Patterson Algorithm

secret key: g(Y), Γ = (α0, α1, . . . , αn−1)

input: distorted codeword ~e ⊕ ~c
output: error vector ~e ∈ Fn

2m

S(Y)← (~e ⊕ ~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · ,Y , 1

)>
U(Y)← S−1 mod g(Y) // by EEA

τ(Y)←
√
U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y)) //β(Y)τ(Y) ≡ α(Y) mod g(Y)

σ(Y)← α2(Y) + Y β2(Y) // σ(Y) =
∏t−1

i=0 (αfi − Y)

ei ← 1 iff σ(αi) = 0 // root finding

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 8 / 37

Syndrome Decoding: Patterson Algorithm

secret key: g(Y), Γ = (α0, α1, . . . , αn−1)

input: distorted codeword ~e ⊕ ~c
output: error vector ~e ∈ Fn

2m

S(Y)← (~e ⊕ ~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · ,Y , 1

)>
U(Y)← S−1 mod g(Y) // by EEA

τ(Y)←
√
U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y)) //β(Y)τ(Y) ≡ α(Y) mod g(Y)

σ(Y)← α2(Y) + Y β2(Y) // σ(Y) =
∏t−1

i=0 (αfi − Y)

ei ← 1 iff σ(αi) = 0 // root finding

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 8 / 37

Syndrome Decoding: Patterson Algorithm

secret key: g(Y), Γ = (α0, α1, . . . , αn−1)

input: distorted codeword ~e ⊕ ~c
output: error vector ~e ∈ Fn

2m

S(Y)← (~e ⊕ ~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · ,Y , 1

)>
U(Y)← S−1 mod g(Y) // by EEA

τ(Y)←
√
U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y)) //β(Y)τ(Y) ≡ α(Y) mod g(Y)

σ(Y)← α2(Y) + Y β2(Y) // σ(Y) =
∏t−1

i=0 (αfi − Y)

ei ← 1 iff σ(αi) = 0 // root finding

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 8 / 37

Syndrome Decoding: Patterson Algorithm

secret key: g(Y), Γ = (α0, α1, . . . , αn−1)

input: distorted codeword ~e ⊕ ~c
output: error vector ~e ∈ Fn

2m

S(Y)← (~e ⊕ ~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · ,Y , 1

)>
U(Y)← S−1 mod g(Y) // by EEA

τ(Y)←
√
U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y)) //β(Y)τ(Y) ≡ α(Y) mod g(Y)

σ(Y)← α2(Y) + Y β2(Y) // σ(Y) =
∏t−1

i=0 (αfi − Y)

ei ← 1 iff σ(αi) = 0 // root finding

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 8 / 37

Syndrome Decoding: Patterson Algorithm

secret key: g(Y), Γ = (α0, α1, . . . , αn−1)

input: distorted codeword ~e ⊕ ~c
output: error vector ~e ∈ Fn

2m

S(Y)← (~e ⊕ ~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · ,Y , 1

)>
U(Y)← S−1 mod g(Y) // by EEA

τ(Y)←
√
U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y)) //β(Y)τ(Y) ≡ α(Y) mod g(Y)

σ(Y)← α2(Y) + Y β2(Y) // σ(Y) =
∏t−1

i=0 (αfi − Y)

ei ← 1 iff σ(αi) = 0 // root finding

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 8 / 37

Implementation Aspects of Cryptograpic Algorithms

Efficiency

RAM

ROM

input

output

∆t

input

output

∆t

Side Channel Security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 9 / 37

Implementation Aspects of Cryptograpic Algorithms

Efficiency

RAM

ROM

input

output

∆t

input

output

∆t

Side Channel Security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 9 / 37

Implementation Aspects of Cryptograpic Algorithms

Efficiency

RAM

ROM

input

output

∆t

input

output

∆t

Side Channel Security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 9 / 37

Implementation Aspects of Cryptograpic Algorithms

Efficiency

RAM

ROM

input

output

∆t

input

output

∆t

Side Channel Security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 9 / 37

Implementation Aspects of Cryptograpic Algorithms

Efficiency

RAM

ROM

input

output

∆t

input

output

∆t

Side Channel Security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 9 / 37

Implementation Aspects of Cryptograpic Algorithms

Efficiency

RAM

ROM

input

output

∆t

input

output

∆t

Side Channel Security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 9 / 37

Implementation Aspects of Cryptograpic Algorithms

Efficiency

RAM

ROM

input

output

∆t

input

output

∆t

Side Channel Security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 9 / 37

Implementation Aspects of Cryptograpic Algorithms

Efficiency

RAM

ROM

input

output

∆t

input

output

∆t

Side Channel Security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 9 / 37

Implementation Aspects of Cryptograpic Algorithms

Efficiency

RAM

ROM

input

output

∆t

input

output

∆t

Side Channel Security

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 9 / 37

The Challenges of Code-based Encryption

Code-based schemes known to be fast

fast enough on embedded systems (smart cards)?
time memory trade-offs?

Large public-key size

what does this mean for embedded systems?

Side Channel Security

no previous works

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 10 / 37

The Challenges of Code-based Encryption

Code-based schemes known to be fast

fast enough on embedded systems (smart cards)?
time memory trade-offs?

Large public-key size

what does this mean for embedded systems?

Side Channel Security

no previous works

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 10 / 37

The Challenges of Code-based Encryption

Code-based schemes known to be fast

fast enough on embedded systems (smart cards)?
time memory trade-offs?

Large public-key size

what does this mean for embedded systems?

Side Channel Security

no previous works

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 10 / 37

The Challenges of Code-based Encryption

Code-based schemes known to be fast

fast enough on embedded systems (smart cards)?
time memory trade-offs?

Large public-key size

what does this mean for embedded systems?

Side Channel Security

no previous works

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 10 / 37

The Challenges of Code-based Encryption

Code-based schemes known to be fast

fast enough on embedded systems (smart cards)?
time memory trade-offs?

Large public-key size

what does this mean for embedded systems?

Side Channel Security

no previous works

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 10 / 37

The Challenges of Code-based Encryption

Code-based schemes known to be fast

fast enough on embedded systems (smart cards)?
time memory trade-offs?

Large public-key size

what does this mean for embedded systems?

Side Channel Security

no previous works

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 10 / 37

The Challenges of Code-based Encryption

Code-based schemes known to be fast

fast enough on embedded systems (smart cards)?
time memory trade-offs?

Large public-key size

what does this mean for embedded systems?

Side Channel Security

no previous works

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 10 / 37

Overview

Efficiency Key-aimed SCA Message-aimed SCA RSA
(Message-aimed SCA)

PQCrypto 2008
Timing Attack

ICISC 2009
Timing Attack

JCEN 2011
Power Analysis Attack

JCEN 2011
Generalization

CANS 2012
Root finding

ISC 2012
Key Storage

PQCrypto 2010
Timing Attack

PQCrypto 2013
Timing Attack

ISICS 2010

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 11 / 37

Overview

Efficiency Key-aimed SCA Message-aimed SCA

PQCrypto 2008
Timing Attack

ICISC 2009
Timing Attack

JCEN 2011
Power Analysis Attack

JCEN 2011
Generalization

CANS 2012
Root finding

ISC 2012
Key Storage

PQCrypto 2010
Timing Attack

PQCrypto 2013
Timing Attack

Decryption:

S(Y)← (~e ⊕~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · , Y , 1

)>

U(Y)← S−1(Y) mod g(Y)

τ(Y)←
√

U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y))

σ(Y)← α2(Y) + Yβ2(Y)

ei ← 1 iff σ(αi) = 0

Encryption:

~z′ = ~mGp

~z = ~z′ ⊕~e

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 12 / 37

Message-aimed Timing Attack

Efficiency Key-aimed SCA Message-aimed SCA

PQCrypto 2008
Timing Attack

ICISC 2009
Timing Attack

JCEN 2011
Power Analysis Attack

JCEN 2011
Generalization

CANS 2012
Root finding

ISC 2012
Key Storage

PQCrypto 2010
Timing Attack

PQCrypto 2013
Timing Attack

Decryption:

S(Y)← (~e ⊕~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · , Y , 1

)>

U(Y)← S−1(Y) mod g(Y)

τ(Y)←
√

U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y))

σ(Y)← α2(Y) + Yβ2(Y)

ei ← 1 iff σ(αi) = 0

Encryption:

~z′ = ~mGp

~z = ~z′ ⊕~e

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 13 / 37

Message-aimed Timing Attack (I)

let w = wt (~e)

deg (σ(Y)) = w for w ≤ t

basically any root-finding variant:

(at least) linear dependency of root-finding time on
deg (σ(Y))

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 14 / 37

Message-aimed Timing Attack (I)

let w = wt (~e)

deg (σ(Y)) = w for w ≤ t

basically any root-finding variant:

(at least) linear dependency of root-finding time on
deg (σ(Y))

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 14 / 37

Message-aimed Timing Attack (I)

let w = wt (~e)

deg (σ(Y)) = w for w ≤ t

basically any root-finding variant:

(at least) linear dependency of root-finding time on
deg (σ(Y))

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 14 / 37

Message-aimed Timing Attack (I)

let w = wt (~e)

deg (σ(Y)) = w for w ≤ t

basically any root-finding variant:

(at least) linear dependency of root-finding time on
deg (σ(Y))

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 14 / 37

Message-aimed Timing Attack (II)

t = 50

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 15 / 37

Overview

Efficiency Key-aimed SCA Message-aimed SCA

PQCrypto 2008
Timing Attack

ICISC 2009
Timing Attack

JCEN 2011
Power Analysis Attack

JCEN 2011
Generalization

CANS 2012
Root finding

ISC 2012
Key Storage

PQCrypto 2010
Timing Attack

PQCrypto 2013
Timing Attack

Decryption:

S(Y)← (~e ⊕~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · , Y , 1

)>

U(Y)← S−1(Y) mod g(Y)

τ(Y)←
√

U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y))

σ(Y)← α2(Y) + Yβ2(Y)

ei ← 1 iff σ(αi) = 0

Encryption:

~z′ = ~mGp

~z = ~z′ ⊕~e

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 16 / 37

Refinements of the Message-aimed Attack

Efficiency Key-aimed SCA Message-aimed SCA

PQCrypto 2008
Timing Attack

ICISC 2009
Timing Attack

JCEN 2011
Power Analysis Attack

JCEN 2011
Generalization

CANS 2012
Root finding

ISC 2012
Key Storage

PQCrypto 2010
Timing Attack

PQCrypto 2013
Timing Attack

Decryption:

S(Y)← (~e ⊕~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · , Y , 1

)>

U(Y)← S−1(Y) mod g(Y)

τ(Y)←
√

U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y))

σ(Y)← α2(Y) + Yβ2(Y)

ei ← 1 iff σ(αi) = 0

Encryption:

~z′ = ~mGp

~z = ~z′ ⊕~e

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 17 / 37

Refinements of the Message-aimed Attack (outline)

Number of iterations in the EEA already dependent on w

smaller timing differences, allowing same attack
countermeasure: avoid “premature” abortion of the EEA

Related simple power analysis attack on the number of
iterations in EEA

similar countermeasure

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 18 / 37

Refinements of the Message-aimed Attack (outline)

Number of iterations in the EEA already dependent on w

smaller timing differences, allowing same attack
countermeasure: avoid “premature” abortion of the EEA

Related simple power analysis attack on the number of
iterations in EEA

similar countermeasure

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 18 / 37

Refinements of the Message-aimed Attack (outline)

Number of iterations in the EEA already dependent on w

smaller timing differences, allowing same attack
countermeasure: avoid “premature” abortion of the EEA

Related simple power analysis attack on the number of
iterations in EEA

similar countermeasure

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 18 / 37

Refinements of the Message-aimed Attack (outline)

Number of iterations in the EEA already dependent on w

smaller timing differences, allowing same attack
countermeasure: avoid “premature” abortion of the EEA

Related simple power analysis attack on the number of
iterations in EEA

similar countermeasure

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 18 / 37

Refinements of the Message-aimed Attack (outline)

Number of iterations in the EEA already dependent on w

smaller timing differences, allowing same attack
countermeasure: avoid “premature” abortion of the EEA

Related simple power analysis attack on the number of
iterations in EEA

similar countermeasure

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 18 / 37

Overview

Efficiency Key-aimed SCA Message-aimed SCA

PQCrypto 2008
Timing Attack

ICISC 2009
Timing Attack

JCEN 2011
Power Analysis Attack

JCEN 2011
Generalization

CANS 2012
Root finding

ISC 2012
Key Storage

PQCrypto 2010
Timing Attack

PQCrypto 2013
Timing Attack

Decryption:

S(Y)← (~e ⊕~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · , Y , 1

)>

U(Y)← S−1(Y) mod g(Y)

τ(Y)←
√

U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y))

σ(Y)← α2(Y) + Yβ2(Y)

ei ← 1 iff σ(αi) = 0

Encryption:

~z′ = ~mGp

~z = ~z′ ⊕~e

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 19 / 37

Analysis of Root-Finding Variants

Efficiency Key-aimed SCA Message-aimed SCA

PQCrypto 2008
Timing Attack

ICISC 2009
Timing Attack

JCEN 2011
Power Analysis Attack

JCEN 2011
Generalization

CANS 2012
Root finding

ISC 2012
Key Storage

PQCrypto 2010
Timing Attack

PQCrypto 2013
Timing Attack

Decryption:

S(Y)← (~e ⊕~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · , Y , 1

)>

U(Y)← S−1(Y) mod g(Y)

τ(Y)←
√

U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y))

σ(Y)← α2(Y) + Yβ2(Y)

ei ← 1 iff σ(αi) = 0

Encryption:

~z′ = ~mGp

~z = ~z′ ⊕~e

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 20 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation

1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms

2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte

safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe

safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms

2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte

unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe

safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2

272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms

34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte

unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe

probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms

2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte

safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe

safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 21 / 37

Overview

Efficiency Key-aimed SCA Message-aimed SCA

PQCrypto 2008
Timing Attack

ICISC 2009
Timing Attack

JCEN 2011
Power Analysis Attack

JCEN 2011
Generalization

CANS 2012
Root finding

ISC 2012
Key Storage

PQCrypto 2010
Timing Attack

PQCrypto 2013
Timing Attack

Decryption:

S(Y)← (~e ⊕~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · , Y , 1

)>

U(Y)← S−1(Y) mod g(Y)

τ(Y)←
√

U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y))

σ(Y)← α2(Y) + Yβ2(Y)

ei ← 1 iff σ(αi) = 0

Encryption:

~z′ = ~mGp

~z = ~z′ ⊕~e

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 22 / 37

Encryption in PKI

Efficiency Key-aimed SCA Message-aimed SCA

PQCrypto 2008
Timing Attack

ICISC 2009
Timing Attack

JCEN 2011
Power Analysis Attack

JCEN 2011
Generalization

CANS 2012
Root finding

ISC 2012
Key Storage

PQCrypto 2010
Timing Attack

PQCrypto 2013
Timing Attack

Decryption:

S(Y)← (~e ⊕~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · , Y , 1

)>

U(Y)← S−1(Y) mod g(Y)

τ(Y)←
√

U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y))

σ(Y)← α2(Y) + Yβ2(Y)

ei ← 1 iff σ(αi) = 0

Encryption:

~z′ = ~mGp

~z = ~z′ ⊕~e

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 23 / 37

Solution for Memory-constrained Platforms

Process the certificate during receipt:

fail –
output
error

success – finalize
& output

sign.
ok?

TBS data beg.

Matrix
(Public Key)
100 KByte

TBS end

signature Hash
value

online-
mul.

~mG

~m

...

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 24 / 37

Solution for Memory-constrained Platforms

Process the certificate during receipt:

fail –
output
error

success – finalize
& output

sign.
ok?

TBS data beg.

Matrix
(Public Key)
100 KByte

TBS end

signature Hash
value

online-
mul.

~mG

~m

...

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 24 / 37

Solution for Memory-constrained Platforms

Process the certificate during receipt:

fail –
output
error

success – finalize
& output

sign.
ok?

TBS data beg.

Matrix
(Public Key)
100 KByte

TBS end

signature Hash
value

online-
mul.

~mG

~m

...

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 24 / 37

Solution for Memory-constrained Platforms

Process the certificate during receipt:

fail –
output
error

success – finalize
& output

sign.
ok?

TBS data beg.

Matrix
(Public Key)
100 KByte

TBS end

signature Hash
value

online-
mul.

~mG

~m

...

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 24 / 37

Solution for Memory-constrained Platforms

Process the certificate during receipt:

fail –
output
error

success – finalize
& output

sign.
ok?

TBS data beg.

Matrix
(Public Key)
100 KByte

TBS end

signature Hash
value

online-
mul.

~mG

~m

...

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 24 / 37

Solution for Memory-constrained Platforms

Process the certificate during receipt:

fail –
output
error

success – finalize
& output

sign.
ok?

TBS data beg.

Matrix
(Public Key)
100 KByte

TBS end

signature Hash
value

online-
mul.

~mG

~m

...

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 24 / 37

Solution for Memory-constrained Platforms

Process the certificate during receipt:

fail –
output
error

success – finalize
& output

sign.
ok?

TBS data beg.

Matrix
(Public Key)
100 KByte

TBS end

signature Hash
value

online-
mul.

~mG

~m

...

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 24 / 37

Results

experiments: transmission rate is the limiting factor

for a key with security level 244 bit: t > 13s

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 25 / 37

Results

experiments: transmission rate is the limiting factor

for a key with security level 244 bit: t > 13s

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 25 / 37

Overview

Efficiency Key-aimed SCA Message-aimed SCA

PQCrypto 2008
Timing Attack

ICISC 2009
Timing Attack

JCEN 2011
Power Analysis Attack

JCEN 2011
Generalization

CANS 2012
Root finding

ISC 2012
Key Storage

PQCrypto 2010
Timing Attack

PQCrypto 2013
Timing Attack

Decryption:

S(Y)← (~e ⊕~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · , Y , 1

)>

U(Y)← S−1(Y) mod g(Y)

τ(Y)←
√

U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y))

σ(Y)← α2(Y) + Yβ2(Y)

ei ← 1 iff σ(αi) = 0

Encryption:

~z′ = ~mGp

~z = ~z′ ⊕~e

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 26 / 37

Timing Attack against the secret Support

Efficiency Key-aimed SCA Message-aimed SCA

PQCrypto 2008
Timing Attack

ICISC 2009
Timing Attack

JCEN 2011
Power Analysis Attack

JCEN 2011
Generalization

CANS 2012
Root finding

ISC 2012
Key Storage

PQCrypto 2010
Timing Attack

PQCrypto 2013
Timing Attack

Decryption:

S(Y)← (~e ⊕~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · , Y , 1

)>

U(Y)← S−1(Y) mod g(Y)

τ(Y)←
√

U(Y) + Y mod g(Y)

(α(Y), β(Y))← EEA(g(Y), τ(Y))

σ(Y)← α2(Y) + Yβ2(Y)

ei ← 1 iff σ(αi) = 0

Encryption:

~z′ = ~mGp

~z = ~z′ ⊕~e

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 27 / 37

Timing Attack against the secret Support

secret key:

g(Y) Γ = (α0, α1, . . . αn−1)

~e = (0 0 . . . 0 1 0 . . . 0 1 0 . . .)
indexes: 0 1 . . . f1 f2

αf1 αf2

σ(Y) =
∏w−1

i=0 (αfi − Y)

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 28 / 37

Timing Attack against the secret Support

secret key:

g(Y) Γ = (α0, α1, . . . αn−1)

~e = (0 0 . . . 0 1 0 . . . 0 1 0 . . .)
indexes: 0 1 . . . f1 f2

αf1 αf2

σ(Y) =
∏w−1

i=0 (αfi − Y)

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 28 / 37

Timing Attack against the secret Support

secret key:

g(Y) Γ = (α0, α1, . . . αn−1)

~e = (0 0 . . . 0 1 0 . . . 0 1 0 . . .)
indexes: 0 1 . . . f1 f2

αf1 αf2

σ(Y) =
∏w−1

i=0 (αfi − Y)

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 28 / 37

Timing Attack against the secret Support

secret key:

g(Y) Γ = (α0, α1, . . . αn−1)

~e = (0 0 . . . 0 1 0 . . . 0 1 0 . . .)
indexes: 0 1 . . . f1 f2

αf1 αf2

σ(Y) =
∏w−1

i=0 (αfi − Y)

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 28 / 37

Overview of the Attack

Timing vulnerabilities:

for w = 4: linear equations
for w = 1: zero element
for w = 6: cubic equations

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 29 / 37

Overview of the Attack

Timing vulnerabilities:

for w = 4: linear equations
for w = 1: zero element
for w = 6: cubic equations

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 29 / 37

Overview of the Attack

Timing vulnerabilities:

for w = 4: linear equations
for w = 1: zero element
for w = 6: cubic equations

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 29 / 37

Overview of the Attack

Timing vulnerabilities:

for w = 4: linear equations
for w = 1: zero element
for w = 6: cubic equations

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 29 / 37

Source of timing differences for weight 4 error vectors

Syndrome

S(Y) ≡
w∑
i=1

1

Y ⊕ αfi

≡ Ω(Y)

σ(Y)
mod g(Y)

If w ≤ t/2

then σ(Y) can be found be EEA

(break once deg (ri (Y)) ≤ (t/2)− 1)

→ information about an intermediate iteration where
coefficient = σ(Y)

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 30 / 37

Source of timing differences for weight 4 error vectors

Syndrome

S(Y) ≡
w∑
i=1

1

Y ⊕ αfi

≡ Ω(Y)

σ(Y)
mod g(Y)

If w ≤ t/2

then σ(Y) can be found be EEA

(break once deg (ri (Y)) ≤ (t/2)− 1)

→ information about an intermediate iteration where
coefficient = σ(Y)

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 30 / 37

Source of timing differences for weight 4 error vectors

Syndrome

S(Y) ≡
w∑
i=1

1

Y ⊕ αfi

≡ Ω(Y)

σ(Y)
mod g(Y)

If w ≤ t/2

then σ(Y) can be found be EEA

(break once deg (ri (Y)) ≤ (t/2)− 1)

→ information about an intermediate iteration where
coefficient = σ(Y)

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 30 / 37

Source of timing differences for weight 4 error vectors

Syndrome

S(Y) ≡
w∑
i=1

1

Y ⊕ αfi

≡ Ω(Y)

σ(Y)
mod g(Y)

If w ≤ t/2

then σ(Y) can be found be EEA

(break once deg (ri (Y)) ≤ (t/2)− 1)

→ information about an intermediate iteration where
coefficient = σ(Y)

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 30 / 37

Source of timing differences for weight 4 error vectors

Syndrome

S(Y) ≡
w∑
i=1

1

Y ⊕ αfi

≡ Ω(Y)

σ(Y)
mod g(Y)

If w ≤ t/2

then σ(Y) can be found be EEA

(break once deg (ri (Y)) ≤ (t/2)− 1)

→ information about an intermediate iteration where
coefficient = σ(Y)

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 30 / 37

The Syndrome Inversion EEA for w = 4

S(Y) ≡
4∑

i=1

1

Y ⊕ αfi

≡ Ω(Y)

σ(Y)
≡ σ3Y

2 ⊕ σ1

Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y ⊕ σ0
mod g(Y)

maximal number of iterations M = deg (Ω(Y)) + deg (σ(Y))

if σ3 = 0, then M smaller than otherwise

→ fewer iterations, smaller timing

σ3 = αf1 ⊕ αf2 ⊕ αf3 ⊕ αf4 = 0

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 31 / 37

The Syndrome Inversion EEA for w = 4

S(Y) ≡
4∑

i=1

1

Y ⊕ αfi

≡ Ω(Y)

σ(Y)
≡ σ3Y

2 ⊕ σ1

Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y ⊕ σ0
mod g(Y)

maximal number of iterations M = deg (Ω(Y)) + deg (σ(Y))

if σ3 = 0, then M smaller than otherwise

→ fewer iterations, smaller timing

σ3 = αf1 ⊕ αf2 ⊕ αf3 ⊕ αf4 = 0

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 31 / 37

The Syndrome Inversion EEA for w = 4

S(Y) ≡
4∑

i=1

1

Y ⊕ αfi

≡ Ω(Y)

σ(Y)
≡ σ3Y

2 ⊕ σ1

Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y ⊕ σ0
mod g(Y)

maximal number of iterations M = deg (Ω(Y)) + deg (σ(Y))

if σ3 = 0, then M smaller than otherwise

→ fewer iterations, smaller timing

σ3 = αf1 ⊕ αf2 ⊕ αf3 ⊕ αf4 = 0

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 31 / 37

The Syndrome Inversion EEA for w = 4

S(Y) ≡
4∑

i=1

1

Y ⊕ αfi

≡ Ω(Y)

σ(Y)
≡ σ3Y

2 ⊕ σ1

Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y ⊕ σ0
mod g(Y)

maximal number of iterations M = deg (Ω(Y)) + deg (σ(Y))

if σ3 = 0, then M smaller than otherwise

→ fewer iterations, smaller timing

σ3 = αf1 ⊕ αf2 ⊕ αf3 ⊕ αf4 = 0

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 31 / 37

The Syndrome Inversion EEA for w = 4

S(Y) ≡
4∑

i=1

1

Y ⊕ αfi

≡ Ω(Y)

σ(Y)
≡ σ3Y

2 ⊕ σ1

Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y ⊕ σ0
mod g(Y)

maximal number of iterations M = deg (Ω(Y)) + deg (σ(Y))

if σ3 = 0, then M smaller than otherwise

→ fewer iterations, smaller timing

σ3 = αf1 ⊕ αf2 ⊕ αf3 ⊕ αf4 = 0

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 31 / 37

Weight 6 Vulnerability

S(Y) ≡ σ5Y
4 ⊕ σ3Y

2 ⊕ σ1

Y 6 ⊕ σ5Y 5 ⊕ σ4Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y + σ0
mod g(Y),

σ5 =
∑6

i=1 αfi

σ3 =
∑6

j=3

∑j−1
k=2

∑k−1
l=1 αfjαfkαfl = 0

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 32 / 37

Weight 6 Vulnerability

S(Y) ≡ σ5Y
4 ⊕ σ3Y

2 ⊕ σ1

Y 6 ⊕ σ5Y 5 ⊕ σ4Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y + σ0
mod g(Y),

σ5 =
∑6

i=1 αfi

σ3 =
∑6

j=3

∑j−1
k=2

∑k−1
l=1 αfjαfkαfl = 0

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 32 / 37

Weight 6 Vulnerability

S(Y) ≡ σ5Y
4 ⊕ σ3Y

2 ⊕ σ1

Y 6 ⊕ σ5Y 5 ⊕ σ4Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y + σ0
mod g(Y),

σ5 =
∑6

i=1 αfi

σ3 =
∑6

j=3

∑j−1
k=2

∑k−1
l=1 αfjαfkαfl = 0

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 32 / 37

Building the Attack

from the linear equations:

α0 α1 . . . αi . . . αn−m−3 αn−m−2 β0 . . . βm−1

1 0 . . . 0 . . . 0 0 X . . . X
...
0 0 . . . 1 . . . 0 0 X . . . X
...
0 0 . . . 0 . . . 0 1 X . . . X

αi =
∑

j∈Bi
βj

→ collect cubic equations s.th. system can be solved

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 33 / 37

Building the Attack

from the linear equations:

α0 α1 . . . αi . . . αn−m−3 αn−m−2 β0 . . . βm−1

1 0 . . . 0 . . . 0 0 X . . . X
...
0 0 . . . 1 . . . 0 0 X . . . X
...
0 0 . . . 0 . . . 0 1 X . . . X

αi =
∑

j∈Bi
βj

→ collect cubic equations s.th. system can be solved

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 33 / 37

Building the Attack

from the linear equations:

α0 α1 . . . αi . . . αn−m−3 αn−m−2 β0 . . . βm−1

1 0 . . . 0 . . . 0 0 X . . . X
...
0 0 . . . 1 . . . 0 0 X . . . X
...
0 0 . . . 0 . . . 0 1 X . . . X

αi =
∑

j∈Bi
βj

→ collect cubic equations s.th. system can be solved

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 33 / 37

Building the Attack

from the linear equations:

α0 α1 . . . αi . . . αn−m−3 αn−m−2 β0 . . . βm−1

1 0 . . . 0 . . . 0 0 X . . . X
...
0 0 . . . 1 . . . 0 0 X . . . X
...
0 0 . . . 0 . . . 0 1 X . . . X

αi =
∑

j∈Bi
βj

→ collect cubic equations s.th. system can be solved

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 33 / 37

Collecting cubic Equations

Ω(Y) = σ5Y
4 ⊕ σ3Y

2 ⊕ σ1

C1: β3 ← β0, β1, β2

C2: β4 ← β0, β1, β2, β3

...
...

...
...

...
Cm−3: βm−1 ← β0, β1, . . . βm−2

practical timing attack on Intel Core2 Duo CPU

number of queries ≈ millions

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 34 / 37

Collecting cubic Equations

Ω(Y) = σ5Y
4 ⊕ σ3Y

2 ⊕ σ1

C1: β3 ← β0, β1, β2

C2: β4 ← β0, β1, β2, β3

...
...

...
...

...
Cm−3: βm−1 ← β0, β1, . . . βm−2

practical timing attack on Intel Core2 Duo CPU

number of queries ≈ millions

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 34 / 37

Collecting cubic Equations

Ω(Y) = σ5Y
4 ⊕ σ3Y

2 ⊕ σ1

C1: β3 ← β0, β1, β2

C2: β4 ← β0, β1, β2, β3

...
...

...
...

...
Cm−3: βm−1 ← β0, β1, . . . βm−2

practical timing attack on Intel Core2 Duo CPU

number of queries ≈ millions

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 34 / 37

Conclusion

Efficiency issues

handling of public key keys on embedded devices
investigation of a number of time-memory tradeoffs

Implementation Security

message-aimed side-channel issues
key-aimed side-channel issues

choice of root-finding algorithm is crucial for performance and
security

security against timing attacks is achievable

the decryption operation can be implemented on embedded
systems without hardware support

the encryption on embedded systems remains as a problem

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 35 / 37

Conclusion

Efficiency issues

handling of public key keys on embedded devices
investigation of a number of time-memory tradeoffs

Implementation Security

message-aimed side-channel issues
key-aimed side-channel issues

choice of root-finding algorithm is crucial for performance and
security

security against timing attacks is achievable

the decryption operation can be implemented on embedded
systems without hardware support

the encryption on embedded systems remains as a problem

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 35 / 37

Conclusion

Efficiency issues

handling of public key keys on embedded devices
investigation of a number of time-memory tradeoffs

Implementation Security

message-aimed side-channel issues
key-aimed side-channel issues

choice of root-finding algorithm is crucial for performance and
security

security against timing attacks is achievable

the decryption operation can be implemented on embedded
systems without hardware support

the encryption on embedded systems remains as a problem

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 35 / 37

Conclusion

Efficiency issues

handling of public key keys on embedded devices
investigation of a number of time-memory tradeoffs

Implementation Security

message-aimed side-channel issues
key-aimed side-channel issues

choice of root-finding algorithm is crucial for performance and
security

security against timing attacks is achievable

the decryption operation can be implemented on embedded
systems without hardware support

the encryption on embedded systems remains as a problem

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 35 / 37

Conclusion

Efficiency issues

handling of public key keys on embedded devices
investigation of a number of time-memory tradeoffs

Implementation Security

message-aimed side-channel issues
key-aimed side-channel issues

choice of root-finding algorithm is crucial for performance and
security

security against timing attacks is achievable

the decryption operation can be implemented on embedded
systems without hardware support

the encryption on embedded systems remains as a problem

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 35 / 37

Conclusion

Efficiency issues

handling of public key keys on embedded devices
investigation of a number of time-memory tradeoffs

Implementation Security

message-aimed side-channel issues
key-aimed side-channel issues

choice of root-finding algorithm is crucial for performance and
security

security against timing attacks is achievable

the decryption operation can be implemented on embedded
systems without hardware support

the encryption on embedded systems remains as a problem

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 35 / 37

Conclusion

Efficiency issues

handling of public key keys on embedded devices
investigation of a number of time-memory tradeoffs

Implementation Security

message-aimed side-channel issues
key-aimed side-channel issues

choice of root-finding algorithm is crucial for performance and
security

security against timing attacks is achievable

the decryption operation can be implemented on embedded
systems without hardware support

the encryption on embedded systems remains as a problem

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 35 / 37

Conclusion

Efficiency issues

handling of public key keys on embedded devices
investigation of a number of time-memory tradeoffs

Implementation Security

message-aimed side-channel issues
key-aimed side-channel issues

choice of root-finding algorithm is crucial for performance and
security

security against timing attacks is achievable

the decryption operation can be implemented on embedded
systems without hardware support

the encryption on embedded systems remains as a problem

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 35 / 37

Conclusion

Efficiency issues

handling of public key keys on embedded devices
investigation of a number of time-memory tradeoffs

Implementation Security

message-aimed side-channel issues
key-aimed side-channel issues

choice of root-finding algorithm is crucial for performance and
security

security against timing attacks is achievable

the decryption operation can be implemented on embedded
systems without hardware support

the encryption on embedded systems remains as a problem

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 35 / 37

Conclusion

Efficiency issues

handling of public key keys on embedded devices
investigation of a number of time-memory tradeoffs

Implementation Security

message-aimed side-channel issues
key-aimed side-channel issues

choice of root-finding algorithm is crucial for performance and
security

security against timing attacks is achievable

the decryption operation can be implemented on embedded
systems without hardware support

the encryption on embedded systems remains as a problem

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 35 / 37

Contributions

Strenzke, F., Tews, E., Molter, H., Overbeck, R., Shoufan, A.: Side Channels in the McEliece PKC. In:
The third international Workshop on Post-Quantum Cryptography, PQC 2008. Lecture Notes in Computer
Science., Springer Berlin / Heidelberg (2008)

Shoufan, A., Strenzke, F., Molter, H., Stöttinger, M.: A Timing Attack against Patterson Algorithm in the
McEliece PKC. In: Information, Security and Cryptology, ICISC 2009. Lecture Notes in Computer Science,
Springer Berlin / Heidelberg (2009)

Strenzke, F.: A Timing Attack against the secret Permutation in the McEliece PKC. In: The third
international Workshop on Post-Quantum Cryptography, PQC 2010. Lecture Notes in Computer Science,
Springer Berlin / Heidelberg (2010)

Strenzke, F.: A Smart Card Implementation of the McEliece PKC. In: Workshop in Information Security
Theory and Practices. Security and Privacy of Pervasive Systems and Smart Devices, WISTP 2010.
Lecture Notes in Computer Science,
Springer Berlin / Heidelberg (2010)

Strenzke, F.: Message-aimed Side Channel and Fault Attacks against Public Key Cryptosystems with
homomorphic Properties. In: Journal of Cryptographic Engineering (2011)

Molter, H.G., Stötinger, M., Shoufan, A., Strenzke, F.: A Simple Power Analysis Attack on a McEliece
Cryptoprocessor. In: Journal of Cryptographic Engineering (2011)

Strenzke, F.: Fast and Secure Root-Finding for Code-based Cryptosystems. In: The 11th International
Conference on Cryptology and Network Security, CANS 2012. Lecture Notes in Computer Science,
Springer Berlin / Heidelberg (2012)

Strenzke, F.: Solutions for the Storage Problem of McEliece Public and Private Keys on
Memory-constrained Platforms. In: Proceedings of the 15th international conference on Information
Security, ISC 2012. Lecture Notes in Computer Science, Springer Berlin / Heidelberg (2012)

Strenzke, F.: Timing Attacks against the Syndrome Inversion in Code-based Cryptosystems. In: The fifth
international Workshop on Post-Quantum Cryptography, PQC 2013. Lecture Notes in Computer Science,
Springer Berlin / Heidelberg (2013)

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 36 / 37

McEliece and Niederreiter

McEliece

Gp = [I|G2] = GT ∈ Fn×k
2

G2 ∈ Fmt×k
2

T ∈ Fk×k
2

Niederreiter

Hp = [I|H2] = TH ∈ Fmt×n
2

H2 ∈ Fmt×k
2

secret key contains T ∈ Fmt×mt
2

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 37 / 37

	Introduction

