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Code-based Cryptosystems

need for cryptosystems in a post-quantum world

lattice-based, multivariate, . . .

code-based cryptosystems

McEliece scheme proposed in 1976
still regarded secure
fast encryption and decryption
large public key
Niederreiter scheme very similar
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Error Correcting Codes

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 5 / 37



Goppa Codes

Parameters of a Goppa Code

irreducible polynomial g(Y ) ∈ F2m [Y ] of degree t (the Goppa
Polynomial)
support Γ = (α0, α1, . . . , αn−1), where αi are pairwise distinct
elements of F2m

Properties of the Code

the code has length n ≤ 2m (code word length) ,
dimension k = n −mt (message length) and
can correct up to t errors.
a parity check matrix H, where cH> = 0 if c ∈ C
example for secure parameters: n = 2048, t = 50 for 100 bit
security
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The McEliece PKC
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Syndrome Decoding: Patterson Algorithm

secret key: g(Y ), Γ = (α0, α1, . . . , αn−1)

input: distorted codeword ~e ⊕ ~c
output: error vector ~e ∈ Fn

2m

S(Y )← (~e ⊕ ~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · ,Y , 1

)>
U(Y )← S−1 mod g(Y ) // by EEA

τ(Y )←
√
U(Y ) + Y mod g(Y )

(α(Y ), β(Y ))← EEA(g(Y ), τ(Y )) //β(Y )τ(Y ) ≡ α(Y ) mod g(Y )

σ(Y )← α2(Y ) + Y β2(Y ) // σ(Y ) =
∏t−1

i=0 (αfi − Y )

ei ← 1 iff σ(αi ) = 0 // root finding
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Implementation Aspects of Cryptograpic Algorithms
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The Challenges of Code-based Encryption

Code-based schemes known to be fast

fast enough on embedded systems (smart cards)?
time memory trade-offs?

Large public-key size

what does this mean for embedded systems?

Side Channel Security

no previous works
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Message-aimed Timing Attack (I)

let w = wt (~e)

deg (σ(Y )) = w for w ≤ t

basically any root-finding variant:

(at least) linear dependency of root-finding time on
deg (σ(Y ))

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 14 / 37



Message-aimed Timing Attack (I)

let w = wt (~e)

deg (σ(Y )) = w for w ≤ t

basically any root-finding variant:

(at least) linear dependency of root-finding time on
deg (σ(Y ))

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 14 / 37



Message-aimed Timing Attack (I)

let w = wt (~e)

deg (σ(Y )) = w for w ≤ t

basically any root-finding variant:

(at least) linear dependency of root-finding time on
deg (σ(Y ))

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 14 / 37



Message-aimed Timing Attack (I)

let w = wt (~e)

deg (σ(Y )) = w for w ≤ t

basically any root-finding variant:

(at least) linear dependency of root-finding time on
deg (σ(Y ))

Efficiency and Implementation Security of Code-based Cryptosyst. Falko Strenzke 14 / 37



Message-aimed Timing Attack (II)

t = 50
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Refinements of the Message-aimed Attack (outline)

Number of iterations in the EEA already dependent on w

smaller timing differences, allowing same attack
countermeasure: avoid “premature” abortion of the EEA

Related simple power analysis attack on the number of
iterations in EEA

similar countermeasure
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Analysis of Root-Finding Variants
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Analysis of Root-Finding Variants

using parameters n = 6624, t = 115 (244 bit security); Atmel
AP7000, 30 MHz

Speed
RAM

demands
Mess.-

aim. TA
Key-aim.

TA

exh. evaluation 1269ms 2344 byte safe safe

exh. evalua-
tion w/ division

638ms 2344 byte unsafe safe with
c.m.

BTZ2 272ms 34886 byte unsafe probably
unsafe

linearized
polynomials

415ms 2344 byte safe safe with
c.m.
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Solution for Memory-constrained Platforms

Process the certificate during receipt:

fail –
output
error

success – finalize
& output

sign.
ok?

TBS data beg.

Matrix
(Public Key)
100 KByte

TBS end

signature Hash
value

online-
mul.

~mG

~m

...
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Results

experiments: transmission rate is the limiting factor

for a key with security level 244 bit: t > 13s
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Overview

Efficiency Key-aimed SCA Message-aimed SCA

PQCrypto 2008
Timing Attack

ICISC 2009
Timing Attack

JCEN 2011
Power Analysis Attack

JCEN 2011
Generalization

CANS 2012
Root finding

ISC 2012
Key Storage

PQCrypto 2010
Timing Attack

PQCrypto 2013
Timing Attack

Decryption:

S(Y )← (~e ⊕~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · , Y , 1

)>

U(Y )← S−1(Y ) mod g(Y )

τ(Y )←
√

U(Y ) + Y mod g(Y )

(α(Y ), β(Y ))← EEA(g(Y ), τ(Y ))

σ(Y )← α2(Y ) + Yβ2(Y )

ei ← 1 iff σ(αi ) = 0

Encryption:

~z′ = ~mGp

~z = ~z′ ⊕~e
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Timing Attack against the secret Support

secret key:

g(Y ) Γ = (α0, α1, . . . αn−1)

~e = ( 0 0 . . . 0 1 0 . . . 0 1 0 . . . )
indexes: 0 1 . . . f1 f2

αf1 αf2

σ(Y ) =
∏w−1

i=0 (αfi − Y )
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Overview of the Attack

Timing vulnerabilities:

for w = 4: linear equations
for w = 1: zero element
for w = 6: cubic equations
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Source of timing differences for weight 4 error vectors

Syndrome

S(Y ) ≡
w∑
i=1

1

Y ⊕ αfi

≡ Ω(Y )

σ(Y )
mod g(Y )

If w ≤ t/2

then σ(Y ) can be found be EEA

(break once deg (ri (Y )) ≤ (t/2)− 1 )

→ information about an intermediate iteration where
coefficient = σ(Y )
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The Syndrome Inversion EEA for w = 4

S(Y ) ≡
4∑

i=1

1

Y ⊕ αfi

≡ Ω(Y )

σ(Y )
≡ σ3Y

2 ⊕ σ1

Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y ⊕ σ0
mod g(Y )

maximal number of iterations M = deg (Ω(Y )) + deg (σ(Y ))

if σ3 = 0, then M smaller than otherwise

→ fewer iterations, smaller timing

σ3 = αf1 ⊕ αf2 ⊕ αf3 ⊕ αf4 = 0
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Weight 6 Vulnerability

S(Y ) ≡ σ5Y
4 ⊕ σ3Y

2 ⊕ σ1

Y 6 ⊕ σ5Y 5 ⊕ σ4Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y + σ0
mod g(Y ),

σ5 =
∑6

i=1 αfi

σ3 =
∑6

j=3

∑j−1
k=2

∑k−1
l=1 αfjαfkαfl = 0
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Building the Attack

from the linear equations:

α0 α1 . . . αi . . . αn−m−3 αn−m−2 β0 . . . βm−1

1 0 . . . 0 . . . 0 0 X . . . X
...
0 0 . . . 1 . . . 0 0 X . . . X
...
0 0 . . . 0 . . . 0 1 X . . . X

αi =
∑

j∈Bi
βj

→ collect cubic equations s.th. system can be solved
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Collecting cubic Equations

Ω(Y ) = σ5Y
4 ⊕ σ3Y

2 ⊕ σ1

C1: β3 ← β0, β1, β2

C2: β4 ← β0, β1, β2, β3

...
...

...
...

...
Cm−3: βm−1 ← β0, β1, . . . βm−2

practical timing attack on Intel Core2 Duo CPU

number of queries ≈ millions
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Conclusion

Efficiency issues

handling of public key keys on embedded devices
investigation of a number of time-memory tradeoffs

Implementation Security

message-aimed side-channel issues
key-aimed side-channel issues

choice of root-finding algorithm is crucial for performance and
security

security against timing attacks is achievable

the decryption operation can be implemented on embedded
systems without hardware support

the encryption on embedded systems remains as a problem
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McEliece and Niederreiter

McEliece

Gp = [I|G2] = GT ∈ Fn×k
2

G2 ∈ Fmt×k
2

T ∈ Fk×k
2

Niederreiter

Hp = [I|H2] = TH ∈ Fmt×n
2

H2 ∈ Fmt×k
2

secret key contains T ∈ Fmt×mt
2
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