
(Post Quantum) Signatures in CMS, OpenPGP,
and LibrePGP
Work in the scope of Project 480 – “PQC@Thunderbird”

©MTG AG Falko Strenzke 1/44

Overview

▸ Cryptographic Message Formats with Digital Signature:

▸ Cryptographic Message Syntax
▸ OpenPGP
▸ LibrePGP (OpenPGP fork)

▸ Our work on CMS was done in the scope of Project 480 – “PQC@Thunderbird”

▸ Standardization and implementation of PQC in OpenPGP
▸ draft-ietf-openpgpg-pqc

©MTG AG Falko Strenzke 2/44

Overview

▸ Cryptographic Message Formats with Digital Signature:

▸ Cryptographic Message Syntax
▸ OpenPGP
▸ LibrePGP (OpenPGP fork)

▸ Our work on CMS was done in the scope of Project 480 – “PQC@Thunderbird”

▸ Standardization and implementation of PQC in OpenPGP
▸ draft-ietf-openpgpg-pqc

©MTG AG Falko Strenzke 2/44

Overview

▸ Cryptographic Message Formats with Digital Signature:

▸ Cryptographic Message Syntax
▸ OpenPGP
▸ LibrePGP (OpenPGP fork)

▸ Our work on CMS was done in the scope of Project 480 – “PQC@Thunderbird”

▸ Standardization and implementation of PQC in OpenPGP
▸ draft-ietf-openpgpg-pqc

©MTG AG Falko Strenzke 2/44

Overview

▸ Cryptographic Message Formats with Digital Signature:

▸ Cryptographic Message Syntax
▸ OpenPGP
▸ LibrePGP (OpenPGP fork)

▸ Our work on CMS was done in the scope of Project 480 – “PQC@Thunderbird”

▸ Standardization and implementation of PQC in OpenPGP
▸ draft-ietf-openpgpg-pqc

©MTG AG Falko Strenzke 2/44

Overview

▸ Cryptographic Message Formats with Digital Signature:

▸ Cryptographic Message Syntax
▸ OpenPGP
▸ LibrePGP (OpenPGP fork)

▸ Our work on CMS was done in the scope of Project 480 – “PQC@Thunderbird”

▸ Standardization and implementation of PQC in OpenPGP
▸ draft-ietf-openpgpg-pqc

©MTG AG Falko Strenzke 2/44

Overview

▸ Cryptographic Message Formats with Digital Signature:

▸ Cryptographic Message Syntax
▸ OpenPGP
▸ LibrePGP (OpenPGP fork)

▸ Our work on CMS was done in the scope of Project 480 – “PQC@Thunderbird”

▸ Standardization and implementation of PQC in OpenPGP
▸ draft-ietf-openpgpg-pqc

©MTG AG Falko Strenzke 2/44

Overview

▸ Cryptographic Message Formats with Digital Signature:

▸ Cryptographic Message Syntax
▸ OpenPGP
▸ LibrePGP (OpenPGP fork)

▸ Our work on CMS was done in the scope of Project 480 – “PQC@Thunderbird”

▸ Standardization and implementation of PQC in OpenPGP
▸ draft-ietf-openpgpg-pqc

©MTG AG Falko Strenzke 2/44

Introduction

CMS: Old EUF-CMA Violations

CMS: (generalized) EUF-CMA Problem in Current Proposal for Composite Signatures

OpenPGP: Natural Strong Non-Separability of Composite Signatures

LibrePGP: EUF-CMA Violation through Signature Version Aliasing

OpenPGP: Unsigned Packet Meta Data

Other Aspects of Post Quantum Signatures in Protocols

©MTG AG Falko Strenzke 3/44

Introduction

CMS: Old EUF-CMA Violations

CMS: (generalized) EUF-CMA Problem in Current Proposal for Composite Signatures

OpenPGP: Natural Strong Non-Separability of Composite Signatures

LibrePGP: EUF-CMA Violation through Signature Version Aliasing

OpenPGP: Unsigned Packet Meta Data

Other Aspects of Post Quantum Signatures in Protocols

©MTG AG Falko Strenzke 4/44

Introduction

▸ EUF-CMA problems with signatures on the protocol level:

▸ ambiguity of what is signed (hashed)
▸ EUF-CMA: Existential Unforgeability under Chosen Message Attack

©MTG AG Falko Strenzke 5/44

Introduction

▸ EUF-CMA problems with signatures on the protocol level:

▸ ambiguity of what is signed (hashed)
▸ EUF-CMA: Existential Unforgeability under Chosen Message Attack

©MTG AG Falko Strenzke 5/44

Introduction

▸ EUF-CMA problems with signatures on the protocol level:

▸ ambiguity of what is signed (hashed)
▸ EUF-CMA: Existential Unforgeability under Chosen Message Attack

©MTG AG Falko Strenzke 5/44

EUF-CMA

▸ EUF-CMA game:
▸ adversary can query signing oracle for any message

▸ choose {mi}

▸ receive {si ∣ si = sign(mi)}

▸ goal:

▸ find valid signature for m′ ≠ mi∀i

▸ Generalization

▸ EUF-CMA is restricted to same signature algorithm for query and forgery
▸ generalization: allow different signature algorithms

©MTG AG Falko Strenzke 6/44

EUF-CMA

▸ EUF-CMA game:
▸ adversary can query signing oracle for any message

▸ choose {mi}

▸ receive {si ∣ si = sign(mi)}

▸ goal:

▸ find valid signature for m′ ≠ mi∀i

▸ Generalization

▸ EUF-CMA is restricted to same signature algorithm for query and forgery
▸ generalization: allow different signature algorithms

©MTG AG Falko Strenzke 6/44

EUF-CMA

▸ EUF-CMA game:
▸ adversary can query signing oracle for any message

▸ choose {mi}

▸ receive {si ∣ si = sign(mi)}

▸ goal:

▸ find valid signature for m′ ≠ mi∀i

▸ Generalization

▸ EUF-CMA is restricted to same signature algorithm for query and forgery
▸ generalization: allow different signature algorithms

©MTG AG Falko Strenzke 6/44

EUF-CMA

▸ EUF-CMA game:
▸ adversary can query signing oracle for any message

▸ choose {mi}

▸ receive {si ∣ si = sign(mi)}

▸ goal:

▸ find valid signature for m′ ≠ mi∀i

▸ Generalization

▸ EUF-CMA is restricted to same signature algorithm for query and forgery
▸ generalization: allow different signature algorithms

©MTG AG Falko Strenzke 6/44

EUF-CMA

▸ EUF-CMA game:
▸ adversary can query signing oracle for any message

▸ choose {mi}

▸ receive {si ∣ si = sign(mi)}

▸ goal:

▸ find valid signature for m′ ≠ mi∀i

▸ Generalization

▸ EUF-CMA is restricted to same signature algorithm for query and forgery
▸ generalization: allow different signature algorithms

©MTG AG Falko Strenzke 6/44

EUF-CMA

▸ EUF-CMA game:
▸ adversary can query signing oracle for any message

▸ choose {mi}

▸ receive {si ∣ si = sign(mi)}

▸ goal:

▸ find valid signature for m′ ≠ mi∀i

▸ Generalization

▸ EUF-CMA is restricted to same signature algorithm for query and forgery
▸ generalization: allow different signature algorithms

©MTG AG Falko Strenzke 6/44

EUF-CMA

▸ EUF-CMA game:
▸ adversary can query signing oracle for any message

▸ choose {mi}

▸ receive {si ∣ si = sign(mi)}

▸ goal:

▸ find valid signature for m′ ≠ mi∀i

▸ Generalization

▸ EUF-CMA is restricted to same signature algorithm for query and forgery
▸ generalization: allow different signature algorithms

©MTG AG Falko Strenzke 6/44

EUF-CMA

▸ EUF-CMA game:
▸ adversary can query signing oracle for any message

▸ choose {mi}

▸ receive {si ∣ si = sign(mi)}

▸ goal:

▸ find valid signature for m′ ≠ mi∀i

▸ Generalization

▸ EUF-CMA is restricted to same signature algorithm for query and forgery
▸ generalization: allow different signature algorithms

©MTG AG Falko Strenzke 6/44

EUF-CMA

▸ EUF-CMA game:
▸ adversary can query signing oracle for any message

▸ choose {mi}

▸ receive {si ∣ si = sign(mi)}

▸ goal:

▸ find valid signature for m′ ≠ mi∀i

▸ Generalization

▸ EUF-CMA is restricted to same signature algorithm for query and forgery
▸ generalization: allow different signature algorithms

©MTG AG Falko Strenzke 6/44

Cryptographic Message Syntax (CMS)

▸ sign & encrypt etc. based on X.509 certificates

▸ protocols building on CMS

▸ S/MIME
▸ German Smart Metering
▸ . . .

▸ as PKCS#7 since 1998

©MTG AG Falko Strenzke 7/44

Cryptographic Message Syntax (CMS)

▸ sign & encrypt etc. based on X.509 certificates

▸ protocols building on CMS

▸ S/MIME
▸ German Smart Metering
▸ . . .

▸ as PKCS#7 since 1998

©MTG AG Falko Strenzke 7/44

Cryptographic Message Syntax (CMS)

▸ sign & encrypt etc. based on X.509 certificates

▸ protocols building on CMS

▸ S/MIME
▸ German Smart Metering
▸ . . .

▸ as PKCS#7 since 1998

©MTG AG Falko Strenzke 7/44

Cryptographic Message Syntax (CMS)

▸ sign & encrypt etc. based on X.509 certificates

▸ protocols building on CMS

▸ S/MIME
▸ German Smart Metering
▸ . . .

▸ as PKCS#7 since 1998

©MTG AG Falko Strenzke 7/44

Cryptographic Message Syntax (CMS)

▸ sign & encrypt etc. based on X.509 certificates

▸ protocols building on CMS

▸ S/MIME
▸ German Smart Metering
▸ . . .

▸ as PKCS#7 since 1998

©MTG AG Falko Strenzke 7/44

Cryptographic Message Syntax (CMS)

▸ sign & encrypt etc. based on X.509 certificates

▸ protocols building on CMS

▸ S/MIME
▸ German Smart Metering
▸ . . .

▸ as PKCS#7 since 1998

©MTG AG Falko Strenzke 7/44

Introduction

CMS: Old EUF-CMA Violations

CMS: (generalized) EUF-CMA Problem in Current Proposal for Composite Signatures

OpenPGP: Natural Strong Non-Separability of Composite Signatures

LibrePGP: EUF-CMA Violation through Signature Version Aliasing

OpenPGP: Unsigned Packet Meta Data

Other Aspects of Post Quantum Signatures in Protocols

©MTG AG Falko Strenzke 8/44

Old EUF-CMA Violations in CMS

▸ CMS signs message content directly

▸ i.e., no metadata is signed

▸ source of the problem:

▸ CMS allows 2 variants of what is signed

▸ Falko Strenzke: “ForgedAttributes: An Existential Forgery Vulnerability of CMS
and PKCS#7 Signatures”

▸ https://eprint.iacr.org/2023/1801

©MTG AG Falko Strenzke 9/44

https://eprint.iacr.org/2023/1801

Old EUF-CMA Violations in CMS

▸ CMS signs message content directly

▸ i.e., no metadata is signed

▸ source of the problem:

▸ CMS allows 2 variants of what is signed

▸ Falko Strenzke: “ForgedAttributes: An Existential Forgery Vulnerability of CMS
and PKCS#7 Signatures”

▸ https://eprint.iacr.org/2023/1801

©MTG AG Falko Strenzke 9/44

https://eprint.iacr.org/2023/1801

Old EUF-CMA Violations in CMS

▸ CMS signs message content directly

▸ i.e., no metadata is signed

▸ source of the problem:

▸ CMS allows 2 variants of what is signed

▸ Falko Strenzke: “ForgedAttributes: An Existential Forgery Vulnerability of CMS
and PKCS#7 Signatures”

▸ https://eprint.iacr.org/2023/1801

©MTG AG Falko Strenzke 9/44

https://eprint.iacr.org/2023/1801

Old EUF-CMA Violations in CMS

▸ CMS signs message content directly

▸ i.e., no metadata is signed

▸ source of the problem:

▸ CMS allows 2 variants of what is signed

▸ Falko Strenzke: “ForgedAttributes: An Existential Forgery Vulnerability of CMS
and PKCS#7 Signatures”

▸ https://eprint.iacr.org/2023/1801

©MTG AG Falko Strenzke 9/44

https://eprint.iacr.org/2023/1801

Old EUF-CMA Violations in CMS

▸ CMS signs message content directly

▸ i.e., no metadata is signed

▸ source of the problem:

▸ CMS allows 2 variants of what is signed

▸ Falko Strenzke: “ForgedAttributes: An Existential Forgery Vulnerability of CMS
and PKCS#7 Signatures”

▸ https://eprint.iacr.org/2023/1801

©MTG AG Falko Strenzke 9/44

https://eprint.iacr.org/2023/1801

Old EUF-CMA Violations in CMS

▸ CMS signs message content directly

▸ i.e., no metadata is signed

▸ source of the problem:

▸ CMS allows 2 variants of what is signed

▸ Falko Strenzke: “ForgedAttributes: An Existential Forgery Vulnerability of CMS
and PKCS#7 Signatures”

▸ https://eprint.iacr.org/2023/1801

©MTG AG Falko Strenzke 9/44

https://eprint.iacr.org/2023/1801

SignerInfo Structure

SignerInfo ::= SEQUENCE {

version CMSVersion ,

sid SignerIdentifier ,

digestAlgorithm DigestAlgorithmIdentifier ,

signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL ,

signatureAlgorithm SignatureAlgorithmIdentifier ,

signature SignatureValue ,

unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

SignedAttributes ::= SET SIZE (1.. MAX) OF Attribute

Attribute ::= SEQUENCE {

attrType OBJECT IDENTIFIER ,

attrValues SET OF AttributeValue }

AttributeValue ::= ANY

▸ signedAttrs:
▸ messageDigest attribute:

▸ contains Hash(M):

messageDigestAttr ::= SEQUENCE {

attrType OBJECT IDENTIFIER ,

attrValues SET {

messageDigest OCTET STRING } }

▸ signedAttrDER
M = DER-encode(signedAttrs(M))

▸ to indicate they contain Hash(M)

Attack variant 1: Let the signer sign an attacker-chosen message of specific form

w/o signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then
3: D = HASH(M)

4: else
5: D = HASH(signedAttrDER

M)

6: end if
7: return sign(Ks ,D)
8: end procedure

Attack variant 1: Let the signer sign an attacker-chosen message of specific form

w/o signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then

3: D = HASH(M) // M = signedAttrDER
M′ ←

4: else
5: D = HASH(signedAttrDER

M)

6: end if
7: return sign(Ks ,D)
8: end procedure

Attack variant 1: Let the signer sign an attacker-chosen message of specific form

w/o signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then

3: D = HASH(M) // M = signedAttrDER
M′ ←

4: else
5: D = HASH(signedAttrDER

M′)

6: end if
7: return sign(Ks ,D)
8: end procedure

Attack variant 1: Let the signer sign an attacker-chosen message of specific form

w/o signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then

3: D = HASH(M) // M = signedAttrDER
M′ ←

4: else
5: D = HASH(signedAttrDER

M′) // ←↑ cannot distinguish, signature valid for M′

6: end if // (adds signedAttrs to R)

7: return sign(Ks ,D)
8: end procedure

Attack variant 1: Let the signer sign an attacker-chosen message of specific form

w/o signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then

3: D = HASH(M) // M = signedAttrDER
M′ ←

4: else
5: D = HASH(signedAttrDER

M′) // ←↑ cannot distinguish, signature valid for M′

6: end if // (adds signedAttrs to R)

7: return sign(Ks ,D)
8: end procedure

→ Can forge signatures for arbitrary attacker-chosen message

Attack variant 2: Let the signer sign any message with signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then
3: D = HASH(M)

4: else
5: D = HASH(signedAttrDER

M)

6: end if
7: return sign(Ks ,D)
8: end procedure

Attack variant 2: Let the signer sign any message with signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then
3: D = HASH(M)

4: else
5: D = HASH(signedAttrDER

M) // M ′ = signedAttrDER
M ←

6: end if
7: return sign(Ks ,D)
8: end procedure

Attack variant 2: Let the signer sign any message with signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then
3: D = HASH(M’) // ← cannot be distinguished from this case (remove signedAttrs)

4: else
5: D = HASH(signedAttrDER

M) // M ′ = signedAttrDER
M ←

6: end if
7: return sign(Ks ,D)
8: end procedure

Attack variant 2: Let the signer sign any message with signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then
3: D = HASH(M’) // ← cannot be distinguished from this case (remove signedAttrs)

4: else
5: D = HASH(signedAttrDER

M) // M ′ = signedAttrDER
M ←

6: end if
7: return sign(Ks ,D)
8: end procedure

→ Can forge signatures for message of form signedAttrDER
M

Format of the signedAttrs when generated by attacker
(attack variant 1)

31 4b 30 18 06 09 2b 80 40 80 f0 0d 01 09 03 31 // fake OID / attribute

... // further fake content

30 18 06 09 2a 86 48 86 f7 0d 01 09 03 31

0b 06 09 2a 86 48 86 f7 0d 01 07 01 30 2f 06 09

2a 86 48 86 f7 0d 01 09 04 31 22 04 20 e0 be bd

22 81 99 93 42 58 14 86 6b 62 70 1e 29 19 ea 26

f1 37 04 99 c1 03 7b 53 b9 d4 9c 2c 8a

30 ...

▸ fixed

▸ variable / attacker chosen

▸ assumption: attacker can make up own OID for unknown attribute 1

▸ structure must contain mandatory attributes (messageDigest, contentType)
1https://datatracker.ietf.org/doc/html/rfc5652#section-2

©MTG AG Falko Strenzke 13/44

https://datatracker.ietf.org/doc/html/rfc5652#section-2

Format of the signedAttrs when generated by signer
(attack variant 2)

31 4b 30 18 06 09 2a 86 48 86 f7 0d 01 09 03 31

0b 06 09 2a 86 48 86 f7 0d 01 07 01 30 2f 06 09

2a 86 48 86 f7 0d 01 09 04 31 22 04 20 e0 be bd // message digest

22 81 99 93 42 58 14 86 6b 62 70 1e 29 19 ea 26

f1 37 04 99 c1 03 7b 53 b9 d4 9c 2c 8a

▸ fixed (order and set of attributes may still vary, this is not indicated here)

▸ variable / potentially influenced by attacker

©MTG AG Falko Strenzke 14/44

Conceivable vulnerable applications

▸ directly signing a firmware image

▸ dense message space (machine-to-machine)

▸ signing unstructured data – e.g. tokens

▸ ≈ strongest: external signatures over unstructured secret data with absent
content:

▸ attacker removes signedAttrs
▸ attacker can produces signature over a secret chosen by them

©MTG AG Falko Strenzke 15/44

Conceivable vulnerable applications

▸ directly signing a firmware image

▸ dense message space (machine-to-machine)

▸ signing unstructured data – e.g. tokens

▸ ≈ strongest: external signatures over unstructured secret data with absent
content:

▸ attacker removes signedAttrs
▸ attacker can produces signature over a secret chosen by them

©MTG AG Falko Strenzke 15/44

Conceivable vulnerable applications

▸ directly signing a firmware image

▸ dense message space (machine-to-machine)

▸ signing unstructured data – e.g. tokens

▸ ≈ strongest: external signatures over unstructured secret data with absent
content:

▸ attacker removes signedAttrs
▸ attacker can produces signature over a secret chosen by them

©MTG AG Falko Strenzke 15/44

Conceivable vulnerable applications

▸ directly signing a firmware image

▸ dense message space (machine-to-machine)

▸ signing unstructured data – e.g. tokens

▸ ≈ strongest: external signatures over unstructured secret data with absent
content:

▸ attacker removes signedAttrs
▸ attacker can produces signature over a secret chosen by them

©MTG AG Falko Strenzke 15/44

Conceivable vulnerable applications

▸ directly signing a firmware image

▸ dense message space (machine-to-machine)

▸ signing unstructured data – e.g. tokens

▸ ≈ strongest: external signatures over unstructured secret data with absent
content:

▸ attacker removes signedAttrs
▸ attacker can produces signature over a secret chosen by them

©MTG AG Falko Strenzke 15/44

Conceivable vulnerable applications

▸ directly signing a firmware image

▸ dense message space (machine-to-machine)

▸ signing unstructured data – e.g. tokens

▸ ≈ strongest: external signatures over unstructured secret data with absent
content:

▸ attacker removes signedAttrs
▸ attacker can produces signature over a secret chosen by them

©MTG AG Falko Strenzke 15/44

Summary: EUF-CMA violation in CMS through signedAttrs

▸ Two signature variants:

▸ with signedAttrs (then they are signed)
▸ without signedAttrs

▸ choice of these two variants is not protected by signature

▸ forgeries restricted:

▸ either signer has to sign a message in specific format; forged message is arbitrary
▸ or the signer has to sign any message; forged signature format is in specific format

©MTG AG Falko Strenzke 16/44

Summary: EUF-CMA violation in CMS through signedAttrs

▸ Two signature variants:

▸ with signedAttrs (then they are signed)
▸ without signedAttrs

▸ choice of these two variants is not protected by signature

▸ forgeries restricted:

▸ either signer has to sign a message in specific format; forged message is arbitrary
▸ or the signer has to sign any message; forged signature format is in specific format

©MTG AG Falko Strenzke 16/44

Summary: EUF-CMA violation in CMS through signedAttrs

▸ Two signature variants:

▸ with signedAttrs (then they are signed)
▸ without signedAttrs

▸ choice of these two variants is not protected by signature

▸ forgeries restricted:

▸ either signer has to sign a message in specific format; forged message is arbitrary
▸ or the signer has to sign any message; forged signature format is in specific format

©MTG AG Falko Strenzke 16/44

Summary: EUF-CMA violation in CMS through signedAttrs

▸ Two signature variants:

▸ with signedAttrs (then they are signed)
▸ without signedAttrs

▸ choice of these two variants is not protected by signature

▸ forgeries restricted:

▸ either signer has to sign a message in specific format; forged message is arbitrary
▸ or the signer has to sign any message; forged signature format is in specific format

©MTG AG Falko Strenzke 16/44

Summary: EUF-CMA violation in CMS through signedAttrs

▸ Two signature variants:

▸ with signedAttrs (then they are signed)
▸ without signedAttrs

▸ choice of these two variants is not protected by signature

▸ forgeries restricted:

▸ either signer has to sign a message in specific format; forged message is arbitrary
▸ or the signer has to sign any message; forged signature format is in specific format

©MTG AG Falko Strenzke 16/44

Summary: EUF-CMA violation in CMS through signedAttrs

▸ Two signature variants:

▸ with signedAttrs (then they are signed)
▸ without signedAttrs

▸ choice of these two variants is not protected by signature

▸ forgeries restricted:

▸ either signer has to sign a message in specific format; forged message is arbitrary
▸ or the signer has to sign any message; forged signature format is in specific format

©MTG AG Falko Strenzke 16/44

Summary: EUF-CMA violation in CMS through signedAttrs

▸ Two signature variants:

▸ with signedAttrs (then they are signed)
▸ without signedAttrs

▸ choice of these two variants is not protected by signature

▸ forgeries restricted:

▸ either signer has to sign a message in specific format; forged message is arbitrary
▸ or the signer has to sign any message; forged signature format is in specific format

©MTG AG Falko Strenzke 16/44

General Countermeasure

▸ hardened implementations: prohibit messages of the form of signedAttrs

▸ during signing
▸ and verification

▸ enforce use of signedAttrs on the application level

▸ some protocols already do it

▸ prohibit the use of signedAttrs

▸ would rather be a step backwards
▸ modern approch is to use signedAttrs always

©MTG AG Falko Strenzke 17/44

General Countermeasure

▸ hardened implementations: prohibit messages of the form of signedAttrs

▸ during signing
▸ and verification

▸ enforce use of signedAttrs on the application level

▸ some protocols already do it

▸ prohibit the use of signedAttrs

▸ would rather be a step backwards
▸ modern approch is to use signedAttrs always

©MTG AG Falko Strenzke 17/44

General Countermeasure

▸ hardened implementations: prohibit messages of the form of signedAttrs

▸ during signing
▸ and verification

▸ enforce use of signedAttrs on the application level

▸ some protocols already do it

▸ prohibit the use of signedAttrs

▸ would rather be a step backwards
▸ modern approch is to use signedAttrs always

©MTG AG Falko Strenzke 17/44

General Countermeasure

▸ hardened implementations: prohibit messages of the form of signedAttrs

▸ during signing
▸ and verification

▸ enforce use of signedAttrs on the application level

▸ some protocols already do it

▸ prohibit the use of signedAttrs

▸ would rather be a step backwards
▸ modern approch is to use signedAttrs always

©MTG AG Falko Strenzke 17/44

General Countermeasure

▸ hardened implementations: prohibit messages of the form of signedAttrs

▸ during signing
▸ and verification

▸ enforce use of signedAttrs on the application level

▸ some protocols already do it

▸ prohibit the use of signedAttrs

▸ would rather be a step backwards
▸ modern approch is to use signedAttrs always

©MTG AG Falko Strenzke 17/44

General Countermeasure

▸ hardened implementations: prohibit messages of the form of signedAttrs

▸ during signing
▸ and verification

▸ enforce use of signedAttrs on the application level

▸ some protocols already do it

▸ prohibit the use of signedAttrs

▸ would rather be a step backwards
▸ modern approch is to use signedAttrs always

©MTG AG Falko Strenzke 17/44

General Countermeasure

▸ hardened implementations: prohibit messages of the form of signedAttrs

▸ during signing
▸ and verification

▸ enforce use of signedAttrs on the application level

▸ some protocols already do it

▸ prohibit the use of signedAttrs

▸ would rather be a step backwards
▸ modern approch is to use signedAttrs always

©MTG AG Falko Strenzke 17/44

General Countermeasure

▸ hardened implementations: prohibit messages of the form of signedAttrs

▸ during signing
▸ and verification

▸ enforce use of signedAttrs on the application level

▸ some protocols already do it

▸ prohibit the use of signedAttrs

▸ would rather be a step backwards
▸ modern approch is to use signedAttrs always

©MTG AG Falko Strenzke 17/44

Countermeasures for PQC Algorithms

▸ PQC Algorithms ML-DSA and SLH-DSA define a context parameter
▸ internally, the context is fed to the preprocessing hash

▸ h = internal-hash(len(ctx) ∣∣ ctx ∣∣ message)
▸ then “actually” sign h

▸ ctx=‘‘with signedAttrs’’

▸ ctx=‘‘without signedAttrs’’

▸ context achieves domain separation

▸ between signing w/ and w/o signedAttrs
▸ can be extended to other uses . . .

▸ Had presentation in LAMPS at IETF 121 with Daniel van Geest (Cryptonext)

▸ Hopefully an IETF draft

▸ proposing different countermeasures

©MTG AG Falko Strenzke 18/44

Countermeasures for PQC Algorithms

▸ PQC Algorithms ML-DSA and SLH-DSA define a context parameter
▸ internally, the context is fed to the preprocessing hash

▸ h = internal-hash(len(ctx) ∣∣ ctx ∣∣ message)
▸ then “actually” sign h

▸ ctx=‘‘with signedAttrs’’

▸ ctx=‘‘without signedAttrs’’

▸ context achieves domain separation

▸ between signing w/ and w/o signedAttrs
▸ can be extended to other uses . . .

▸ Had presentation in LAMPS at IETF 121 with Daniel van Geest (Cryptonext)

▸ Hopefully an IETF draft

▸ proposing different countermeasures

©MTG AG Falko Strenzke 18/44

Countermeasures for PQC Algorithms

▸ PQC Algorithms ML-DSA and SLH-DSA define a context parameter
▸ internally, the context is fed to the preprocessing hash

▸ h = internal-hash(len(ctx) ∣∣ ctx ∣∣ message)
▸ then “actually” sign h

▸ ctx=‘‘with signedAttrs’’

▸ ctx=‘‘without signedAttrs’’

▸ context achieves domain separation

▸ between signing w/ and w/o signedAttrs
▸ can be extended to other uses . . .

▸ Had presentation in LAMPS at IETF 121 with Daniel van Geest (Cryptonext)

▸ Hopefully an IETF draft

▸ proposing different countermeasures

©MTG AG Falko Strenzke 18/44

Countermeasures for PQC Algorithms

▸ PQC Algorithms ML-DSA and SLH-DSA define a context parameter
▸ internally, the context is fed to the preprocessing hash

▸ h = internal-hash(len(ctx) ∣∣ ctx ∣∣ message)
▸ then “actually” sign h

▸ ctx=‘‘with signedAttrs’’

▸ ctx=‘‘without signedAttrs’’

▸ context achieves domain separation

▸ between signing w/ and w/o signedAttrs
▸ can be extended to other uses . . .

▸ Had presentation in LAMPS at IETF 121 with Daniel van Geest (Cryptonext)

▸ Hopefully an IETF draft

▸ proposing different countermeasures

©MTG AG Falko Strenzke 18/44

Countermeasures for PQC Algorithms

▸ PQC Algorithms ML-DSA and SLH-DSA define a context parameter
▸ internally, the context is fed to the preprocessing hash

▸ h = internal-hash(len(ctx) ∣∣ ctx ∣∣ message)
▸ then “actually” sign h

▸ ctx=‘‘with signedAttrs’’

▸ ctx=‘‘without signedAttrs’’

▸ context achieves domain separation

▸ between signing w/ and w/o signedAttrs
▸ can be extended to other uses . . .

▸ Had presentation in LAMPS at IETF 121 with Daniel van Geest (Cryptonext)

▸ Hopefully an IETF draft

▸ proposing different countermeasures

©MTG AG Falko Strenzke 18/44

Countermeasures for PQC Algorithms

▸ PQC Algorithms ML-DSA and SLH-DSA define a context parameter
▸ internally, the context is fed to the preprocessing hash

▸ h = internal-hash(len(ctx) ∣∣ ctx ∣∣ message)
▸ then “actually” sign h

▸ ctx=‘‘with signedAttrs’’

▸ ctx=‘‘without signedAttrs’’

▸ context achieves domain separation

▸ between signing w/ and w/o signedAttrs
▸ can be extended to other uses . . .

▸ Had presentation in LAMPS at IETF 121 with Daniel van Geest (Cryptonext)

▸ Hopefully an IETF draft

▸ proposing different countermeasures

©MTG AG Falko Strenzke 18/44

Countermeasures for PQC Algorithms

▸ PQC Algorithms ML-DSA and SLH-DSA define a context parameter
▸ internally, the context is fed to the preprocessing hash

▸ h = internal-hash(len(ctx) ∣∣ ctx ∣∣ message)
▸ then “actually” sign h

▸ ctx=‘‘with signedAttrs’’

▸ ctx=‘‘without signedAttrs’’

▸ context achieves domain separation

▸ between signing w/ and w/o signedAttrs
▸ can be extended to other uses . . .

▸ Had presentation in LAMPS at IETF 121 with Daniel van Geest (Cryptonext)

▸ Hopefully an IETF draft

▸ proposing different countermeasures

©MTG AG Falko Strenzke 18/44

Countermeasures for PQC Algorithms

▸ PQC Algorithms ML-DSA and SLH-DSA define a context parameter
▸ internally, the context is fed to the preprocessing hash

▸ h = internal-hash(len(ctx) ∣∣ ctx ∣∣ message)
▸ then “actually” sign h

▸ ctx=‘‘with signedAttrs’’

▸ ctx=‘‘without signedAttrs’’

▸ context achieves domain separation

▸ between signing w/ and w/o signedAttrs
▸ can be extended to other uses . . .

▸ Had presentation in LAMPS at IETF 121 with Daniel van Geest (Cryptonext)

▸ Hopefully an IETF draft

▸ proposing different countermeasures

©MTG AG Falko Strenzke 18/44

Countermeasures for PQC Algorithms

▸ PQC Algorithms ML-DSA and SLH-DSA define a context parameter
▸ internally, the context is fed to the preprocessing hash

▸ h = internal-hash(len(ctx) ∣∣ ctx ∣∣ message)
▸ then “actually” sign h

▸ ctx=‘‘with signedAttrs’’

▸ ctx=‘‘without signedAttrs’’

▸ context achieves domain separation

▸ between signing w/ and w/o signedAttrs
▸ can be extended to other uses . . .

▸ Had presentation in LAMPS at IETF 121 with Daniel van Geest (Cryptonext)

▸ Hopefully an IETF draft

▸ proposing different countermeasures

©MTG AG Falko Strenzke 18/44

Countermeasures for PQC Algorithms

▸ PQC Algorithms ML-DSA and SLH-DSA define a context parameter
▸ internally, the context is fed to the preprocessing hash

▸ h = internal-hash(len(ctx) ∣∣ ctx ∣∣ message)
▸ then “actually” sign h

▸ ctx=‘‘with signedAttrs’’

▸ ctx=‘‘without signedAttrs’’

▸ context achieves domain separation

▸ between signing w/ and w/o signedAttrs
▸ can be extended to other uses . . .

▸ Had presentation in LAMPS at IETF 121 with Daniel van Geest (Cryptonext)

▸ Hopefully an IETF draft

▸ proposing different countermeasures

©MTG AG Falko Strenzke 18/44

Countermeasures for PQC Algorithms

▸ PQC Algorithms ML-DSA and SLH-DSA define a context parameter
▸ internally, the context is fed to the preprocessing hash

▸ h = internal-hash(len(ctx) ∣∣ ctx ∣∣ message)
▸ then “actually” sign h

▸ ctx=‘‘with signedAttrs’’

▸ ctx=‘‘without signedAttrs’’

▸ context achieves domain separation

▸ between signing w/ and w/o signedAttrs
▸ can be extended to other uses . . .

▸ Had presentation in LAMPS at IETF 121 with Daniel van Geest (Cryptonext)

▸ Hopefully an IETF draft

▸ proposing different countermeasures

©MTG AG Falko Strenzke 18/44

Countermeasures for PQC Algorithms

▸ PQC Algorithms ML-DSA and SLH-DSA define a context parameter
▸ internally, the context is fed to the preprocessing hash

▸ h = internal-hash(len(ctx) ∣∣ ctx ∣∣ message)
▸ then “actually” sign h

▸ ctx=‘‘with signedAttrs’’

▸ ctx=‘‘without signedAttrs’’

▸ context achieves domain separation

▸ between signing w/ and w/o signedAttrs
▸ can be extended to other uses . . .

▸ Had presentation in LAMPS at IETF 121 with Daniel van Geest (Cryptonext)

▸ Hopefully an IETF draft

▸ proposing different countermeasures

©MTG AG Falko Strenzke 18/44

Introduction

CMS: Old EUF-CMA Violations

CMS: (generalized) EUF-CMA Problem in Current Proposal for Composite Signatures

OpenPGP: Natural Strong Non-Separability of Composite Signatures

LibrePGP: EUF-CMA Violation through Signature Version Aliasing

OpenPGP: Unsigned Packet Meta Data

Other Aspects of Post Quantum Signatures in Protocols

©MTG AG Falko Strenzke 19/44

Hybrid / Multi-Algorithm Signatures

▸ insufficient trust in ML-DSA

▸ general recommendation: Multi-Algorithm Signatures

▸ s1 = sign-ECDSA(m)

▸ s2 = sign-ML-DSA(m)

▸ s = s1∣∣s2

©MTG AG Falko Strenzke 20/44

Hybrid / Multi-Algorithm Signatures

▸ insufficient trust in ML-DSA

▸ general recommendation: Multi-Algorithm Signatures

▸ s1 = sign-ECDSA(m)

▸ s2 = sign-ML-DSA(m)

▸ s = s1∣∣s2

©MTG AG Falko Strenzke 20/44

Hybrid / Multi-Algorithm Signatures

▸ insufficient trust in ML-DSA

▸ general recommendation: Multi-Algorithm Signatures

▸ s1 = sign-ECDSA(m)

▸ s2 = sign-ML-DSA(m)

▸ s = s1∣∣s2

©MTG AG Falko Strenzke 20/44

Hybrid / Multi-Algorithm Signatures

▸ insufficient trust in ML-DSA

▸ general recommendation: Multi-Algorithm Signatures

▸ s1 = sign-ECDSA(m)

▸ s2 = sign-ML-DSA(m)

▸ s = s1∣∣s2

©MTG AG Falko Strenzke 20/44

Hybrid / Multi-Algorithm Signatures

▸ insufficient trust in ML-DSA

▸ general recommendation: Multi-Algorithm Signatures

▸ s1 = sign-ECDSA(m)

▸ s2 = sign-ML-DSA(m)

▸ s = s1∣∣s2

©MTG AG Falko Strenzke 20/44

Protection against Signature Stripping Attacks

▸ Signature stripping attack:

▸ Adversary removes one of the two signatures
▸ → Standalone signature
▸ with simple parallel signatures, this has no security implications

▸ no change of message
▸ verifier must always accept only secure signatures
▸ verification at later point can be affected (availability)

▸ requires key-reuse

▸ ECDSA-¤1 → ECDSA-standalone 1

▸ ECDSA-¤1 → ML-DSA+ECDSA 2

▸ not allowed by draft-ietf-lamps-pq-composite-sigs-03

©MTG AG Falko Strenzke 21/44

EUF-CMA Problem in Current Proposal for
Composite Signatures

▸ draft-ietf-lamps-pq-composite-sigs-03

▸ relevant for ML-DSA+X

▸ Composite-ML-DSA.Sign (sk, M, ctx)

M’ = OID || len(ctx) || ctx || M

mldsaSig = ML-DSA.Sign(key=mldsaSK , msg=M’, ctx=OID)

tradSig = Trad.Sign(tradSK , M’)

©MTG AG Falko Strenzke 22/44

▸ Aim of countermeasure: achieve Weak-Non-Separability

▸ Leaves “artifact” in the message
▸ � Artifact is violation of (generalized) EUF-CMA

▸ generalized because cross-algorithm CMA is needed

▸ (generalized) EUF-CMA forgeries

▸ remove PQ part from “ML-DSA+ECDSA” signature
▸ ECDSA signature valid
▸ forged message: OID ∣∣ len(ctx) ∣∣ ctx ∣∣ M

©MTG AG Falko Strenzke 23/44

▸ Aim of countermeasure: achieve Weak-Non-Separability

▸ Leaves “artifact” in the message
▸ � Artifact is violation of (generalized) EUF-CMA

▸ generalized because cross-algorithm CMA is needed

▸ (generalized) EUF-CMA forgeries

▸ remove PQ part from “ML-DSA+ECDSA” signature
▸ ECDSA signature valid
▸ forged message: OID ∣∣ len(ctx) ∣∣ ctx ∣∣ M

©MTG AG Falko Strenzke 23/44

▸ Aim of countermeasure: achieve Weak-Non-Separability

▸ Leaves “artifact” in the message
▸ � Artifact is violation of (generalized) EUF-CMA

▸ generalized because cross-algorithm CMA is needed

▸ (generalized) EUF-CMA forgeries

▸ remove PQ part from “ML-DSA+ECDSA” signature
▸ ECDSA signature valid
▸ forged message: OID ∣∣ len(ctx) ∣∣ ctx ∣∣ M

©MTG AG Falko Strenzke 23/44

▸ Aim of countermeasure: achieve Weak-Non-Separability

▸ Leaves “artifact” in the message
▸ � Artifact is violation of (generalized) EUF-CMA

▸ generalized because cross-algorithm CMA is needed

▸ (generalized) EUF-CMA forgeries

▸ remove PQ part from “ML-DSA+ECDSA” signature
▸ ECDSA signature valid
▸ forged message: OID ∣∣ len(ctx) ∣∣ ctx ∣∣ M

©MTG AG Falko Strenzke 23/44

▸ Aim of countermeasure: achieve Weak-Non-Separability

▸ Leaves “artifact” in the message
▸ � Artifact is violation of (generalized) EUF-CMA

▸ generalized because cross-algorithm CMA is needed

▸ (generalized) EUF-CMA forgeries

▸ remove PQ part from “ML-DSA+ECDSA” signature
▸ ECDSA signature valid
▸ forged message: OID ∣∣ len(ctx) ∣∣ ctx ∣∣ M

©MTG AG Falko Strenzke 23/44

▸ Aim of countermeasure: achieve Weak-Non-Separability

▸ Leaves “artifact” in the message
▸ � Artifact is violation of (generalized) EUF-CMA

▸ generalized because cross-algorithm CMA is needed

▸ (generalized) EUF-CMA forgeries

▸ remove PQ part from “ML-DSA+ECDSA” signature
▸ ECDSA signature valid
▸ forged message: OID ∣∣ len(ctx) ∣∣ ctx ∣∣ M

©MTG AG Falko Strenzke 23/44

▸ Aim of countermeasure: achieve Weak-Non-Separability

▸ Leaves “artifact” in the message
▸ � Artifact is violation of (generalized) EUF-CMA

▸ generalized because cross-algorithm CMA is needed

▸ (generalized) EUF-CMA forgeries

▸ remove PQ part from “ML-DSA+ECDSA” signature
▸ ECDSA signature valid
▸ forged message: OID ∣∣ len(ctx) ∣∣ ctx ∣∣ M

©MTG AG Falko Strenzke 23/44

▸ Aim of countermeasure: achieve Weak-Non-Separability

▸ Leaves “artifact” in the message
▸ � Artifact is violation of (generalized) EUF-CMA

▸ generalized because cross-algorithm CMA is needed

▸ (generalized) EUF-CMA forgeries

▸ remove PQ part from “ML-DSA+ECDSA” signature
▸ ECDSA signature valid
▸ forged message: OID ∣∣ len(ctx) ∣∣ ctx ∣∣ M

©MTG AG Falko Strenzke 23/44

Forged Message

▸ forged message: OID || len(ctx) || ctx || M

▸ OID: predefined list, but variable content

06 0B 6086480186FA6B50080115 || len(ctx) || ctx || M

^ ^ ^

length byte | |

choice from list < 256 bytes

set by application / attacker

▸ protocols with valid messages starting with 06 potentially affected

©MTG AG Falko Strenzke 24/44

Countermeasure

▸ Countermeasure: detectable constant prefix

<32 magic bytes> 06 0B 6086480186FA6B50080115 || len(ctx) || ctx || M

▸ newer implementations can check for the magic bytes → attack detection

©MTG AG Falko Strenzke 25/44

Introduction

CMS: Old EUF-CMA Violations

CMS: (generalized) EUF-CMA Problem in Current Proposal for Composite Signatures

OpenPGP: Natural Strong Non-Separability of Composite Signatures

LibrePGP: EUF-CMA Violation through Signature Version Aliasing

OpenPGP: Unsigned Packet Meta Data

Other Aspects of Post Quantum Signatures in Protocols

©MTG AG Falko Strenzke 26/44

Non-Separability in OpenPGP Signatures

v6 signature packet

v6 = 0x06

sig-type 0x00

1B pk-algo = hybrid-. . .

1B hash-algo

2B hashed subpacket length

hashed subpackets

2B unhashed subpacket length

unhashed subpackets

2B checksum for hash-value

algorithm-specific signature data

sig 1 sig 2

doesn’t fithashed
as meta
data

©MTG AG Falko Strenzke 27/44

Non-Separability in OpenPGP Signatures

v6 signature packet

v6 = 0x06

sig-type 0x00

1B pk-algo = hybrid-. . .

1B hash-algo

2B hashed subpacket length

hashed subpackets

2B unhashed subpacket length

unhashed subpackets

2B checksum for hash-value

algorithm-specific signature data

sig 1 sig 2

doesn’t fit

hashed
as meta
data

©MTG AG Falko Strenzke 27/44

Non-Separability in OpenPGP Signatures

v6 signature packet

v6 = 0x06

sig-type 0x00

1B pk-algo = hybrid-. . .

1B hash-algo

2B hashed subpacket length

hashed subpackets

2B unhashed subpacket length

unhashed subpackets

2B checksum for hash-value

algorithm-specific signature data

sig 1 sig 2

doesn’t fit

hashed
as meta
data

©MTG AG Falko Strenzke 27/44

Non-Separability in OpenPGP Signatures

v6 signature packet

v6 = 0x06

sig-type 0x00

1B pk-algo = hybrid-. . .

1B hash-algo

2B hashed subpacket length

hashed subpackets

2B unhashed subpacket length

unhashed subpackets

2B checksum for hash-value

algorithm-specific signature data

sig 1 sig 2

doesn’t fithashed
as meta
data

©MTG AG Falko Strenzke 27/44

Introduction

CMS: Old EUF-CMA Violations

CMS: (generalized) EUF-CMA Problem in Current Proposal for Composite Signatures

OpenPGP: Natural Strong Non-Separability of Composite Signatures

LibrePGP: EUF-CMA Violation through Signature Version Aliasing

OpenPGP: Unsigned Packet Meta Data

Other Aspects of Post Quantum Signatures in Protocols

©MTG AG Falko Strenzke 28/44

LibrePGP

RFC 2440 1998

RFC 4880 2007

4880bis 2015

RFC 9580 2024

LibrePGP 2023

v3 and v4 signatures

v3 and v4 signatures

adds v5 signatures

adds v6 signatures

generation
of v3 sig.
disallowed

©MTG AG Falko Strenzke 29/44

LibrePGP v5 Signatures

v5 signature packet

v5 = 0x05

sig-type 0x00 // document signature

1B pk-algo

1B hash-algo

2B hashed subpacket length

hashed subpackets

2B unhashed subpacket length

unhashed subpackets

2B checksum for hash-value

algorithm-specific signature data

©MTG AG Falko Strenzke 30/44

LibrePGP v5 - v3 Signature Aliasing

▸ Signature aliasing:

▸ hashed data is ambiguous
▸ → multiple “interpretations” of what was signed

▸ requirement:

▸ injective / one-to-one mapping of protocol semantics to hashed data
▸ “semantics → hashed data”: always given
▸ “semantics ← hashed data”: not necessarily

▸ hashed data needs to be uniquely parseable
▸ from front, rear, or both

▸ example: hash first and last name together:

▸ maxi + müller → maximüller
▸ maxim + üller → maximüller

©MTG AG Falko Strenzke 31/44

LibrePGP v5 - v3 Signature Aliasing

▸ Signature aliasing:

▸ hashed data is ambiguous
▸ → multiple “interpretations” of what was signed

▸ requirement:

▸ injective / one-to-one mapping of protocol semantics to hashed data
▸ “semantics → hashed data”: always given
▸ “semantics ← hashed data”: not necessarily

▸ hashed data needs to be uniquely parseable
▸ from front, rear, or both

▸ example: hash first and last name together:

▸ maxi + müller → maximüller
▸ maxim + üller → maximüller

©MTG AG Falko Strenzke 31/44

LibrePGP v5 - v3 Signature Aliasing

▸ Signature aliasing:

▸ hashed data is ambiguous
▸ → multiple “interpretations” of what was signed

▸ requirement:

▸ injective / one-to-one mapping of protocol semantics to hashed data
▸ “semantics → hashed data”: always given
▸ “semantics ← hashed data”: not necessarily

▸ hashed data needs to be uniquely parseable
▸ from front, rear, or both

▸ example: hash first and last name together:

▸ maxi + müller → maximüller
▸ maxim + üller → maximüller

©MTG AG Falko Strenzke 31/44

LibrePGP v5 - v3 Signature Aliasing

▸ Signature aliasing:

▸ hashed data is ambiguous
▸ → multiple “interpretations” of what was signed

▸ requirement:

▸ injective / one-to-one mapping of protocol semantics to hashed data
▸ “semantics → hashed data”: always given
▸ “semantics ← hashed data”: not necessarily

▸ hashed data needs to be uniquely parseable
▸ from front, rear, or both

▸ example: hash first and last name together:

▸ maxi + müller → maximüller
▸ maxim + üller → maximüller

©MTG AG Falko Strenzke 31/44

LibrePGP v5 - v3 Signature Aliasing

▸ Signature aliasing:

▸ hashed data is ambiguous
▸ → multiple “interpretations” of what was signed

▸ requirement:

▸ injective / one-to-one mapping of protocol semantics to hashed data
▸ “semantics → hashed data”: always given
▸ “semantics ← hashed data”: not necessarily

▸ hashed data needs to be uniquely parseable
▸ from front, rear, or both

▸ example: hash first and last name together:

▸ maxi + müller → maximüller
▸ maxim + üller → maximüller

©MTG AG Falko Strenzke 31/44

LibrePGP v5 - v3 Signature Aliasing

▸ Signature aliasing:

▸ hashed data is ambiguous
▸ → multiple “interpretations” of what was signed

▸ requirement:

▸ injective / one-to-one mapping of protocol semantics to hashed data
▸ “semantics → hashed data”: always given
▸ “semantics ← hashed data”: not necessarily

▸ hashed data needs to be uniquely parseable
▸ from front, rear, or both

▸ example: hash first and last name together:

▸ maxi + müller → maximüller
▸ maxim + üller → maximüller

©MTG AG Falko Strenzke 31/44

LibrePGP v5 - v3 Signature Aliasing

▸ Signature aliasing:

▸ hashed data is ambiguous
▸ → multiple “interpretations” of what was signed

▸ requirement:

▸ injective / one-to-one mapping of protocol semantics to hashed data
▸ “semantics → hashed data”: always given
▸ “semantics ← hashed data”: not necessarily

▸ hashed data needs to be uniquely parseable
▸ from front, rear, or both

▸ example: hash first and last name together:

▸ maxi + müller → maximüller
▸ maxim + üller → maximüller

©MTG AG Falko Strenzke 31/44

LibrePGP v5 - v3 Signature Aliasing

▸ Signature aliasing:

▸ hashed data is ambiguous
▸ → multiple “interpretations” of what was signed

▸ requirement:

▸ injective / one-to-one mapping of protocol semantics to hashed data
▸ “semantics → hashed data”: always given
▸ “semantics ← hashed data”: not necessarily

▸ hashed data needs to be uniquely parseable
▸ from front, rear, or both

▸ example: hash first and last name together:

▸ maxi + müller → maximüller
▸ maxim + üller → maximüller

©MTG AG Falko Strenzke 31/44

LibrePGP v5 - v3 Signature Aliasing

▸ Signature aliasing:

▸ hashed data is ambiguous
▸ → multiple “interpretations” of what was signed

▸ requirement:

▸ injective / one-to-one mapping of protocol semantics to hashed data
▸ “semantics → hashed data”: always given
▸ “semantics ← hashed data”: not necessarily

▸ hashed data needs to be uniquely parseable
▸ from front, rear, or both

▸ example: hash first and last name together:

▸ maxi + müller → maximüller
▸ maxim + üller → maximüller

©MTG AG Falko Strenzke 31/44

LibrePGP v5 - v3 Signature Aliasing

▸ Signature aliasing:

▸ hashed data is ambiguous
▸ → multiple “interpretations” of what was signed

▸ requirement:

▸ injective / one-to-one mapping of protocol semantics to hashed data
▸ “semantics → hashed data”: always given
▸ “semantics ← hashed data”: not necessarily

▸ hashed data needs to be uniquely parseable
▸ from front, rear, or both

▸ example: hash first and last name together:

▸ maxi + müller → maximüller
▸ maxim + üller → maximüller

©MTG AG Falko Strenzke 31/44

LibrePGP v5 - v3 Signature Aliasing

▸ Signature aliasing:

▸ hashed data is ambiguous
▸ → multiple “interpretations” of what was signed

▸ requirement:

▸ injective / one-to-one mapping of protocol semantics to hashed data
▸ “semantics → hashed data”: always given
▸ “semantics ← hashed data”: not necessarily

▸ hashed data needs to be uniquely parseable
▸ from front, rear, or both

▸ example: hash first and last name together:

▸ maxi + müller → maximüller
▸ maxim + üller → maximüller

©MTG AG Falko Strenzke 31/44

LibrePGP v5 - v3 Signature Aliasing

▸ Signature aliasing:

▸ hashed data is ambiguous
▸ → multiple “interpretations” of what was signed

▸ requirement:

▸ injective / one-to-one mapping of protocol semantics to hashed data
▸ “semantics → hashed data”: always given
▸ “semantics ← hashed data”: not necessarily

▸ hashed data needs to be uniquely parseable
▸ from front, rear, or both

▸ example: hash first and last name together:

▸ maxi + müller → maximüller
▸ maxim + üller → maximüller

©MTG AG Falko Strenzke 31/44

LibrePGP v5 - v3 Signatures Aliasing

hashed data for
a v5 document
signature

hashed data for
a v3 document
signature

document data document data

v5 = 0x05 v5 = 0x05

sig-type 0x00 sig-type 0x00

1B pk-algo pk-algo

1B hash-algo hash-algo

2B hashed subp len 2B hashed subp len

hashed subpackets hashed subpackets

1B content format 1B content format

1B length ∣∣ file name 1B length ∣∣ file name

4B date 4B date

v5 ∣∣ 0xFF v5 ∣∣ 0xFF

hashed-len 8 = 0x00 hashed-len 8 = 0x00

hashed-len 7 = 0x00 hashed-len 7 = 0x00

hashed-len 6 = 0x00 hashed-len 6 = 0x00

hashed-len 5 = 0x00 or 0x01 sig-type = 0x00 or 0x01

4B hashed-len 1-4 ≥ 0 4B sig. creation date

v5
trailer

signature
meta data

8 byte
hashed
length

validly signed
document

data appended
to validly
signed document

forged document
for which signature
is valid

v3 trailer
(doc. signature)

©MTG AG Falko Strenzke 32/44

LibrePGP v5 - v3 Signatures Aliasing

hashed data for
a v5 document
signature

hashed data for
a v3 document
signature

document data document data

v5 = 0x05 v5 = 0x05

sig-type 0x00 sig-type 0x00

1B pk-algo pk-algo

1B hash-algo hash-algo

2B hashed subp len 2B hashed subp len

hashed subpackets hashed subpackets

1B content format 1B content format

1B length ∣∣ file name 1B length ∣∣ file name

4B date 4B date

v5 ∣∣ 0xFF v5 ∣∣ 0xFF

hashed-len 8 = 0x00 hashed-len 8 = 0x00

hashed-len 7 = 0x00 hashed-len 7 = 0x00

hashed-len 6 = 0x00 hashed-len 6 = 0x00

hashed-len 5 = 0x00 or 0x01 sig-type = 0x00 or 0x01

4B hashed-len 1-4 ≥ 0 4B sig. creation date

v5
trailer

signature
meta data

8 byte
hashed
length

validly signed
document

data appended
to validly
signed document

forged document
for which signature
is valid

v3 trailer
(doc. signature)

©MTG AG Falko Strenzke 32/44

LibrePGP v5 - v3 Signatures Aliasing

hashed data for
a v5 document
signature

hashed data for
a v3 document
signature

document data document data

v5 = 0x05 v5 = 0x05

sig-type 0x00 sig-type 0x00

1B pk-algo pk-algo

1B hash-algo hash-algo

2B hashed subp len 2B hashed subp len

hashed subpackets hashed subpackets

1B content format 1B content format

1B length ∣∣ file name 1B length ∣∣ file name

4B date 4B date

v5 ∣∣ 0xFF v5 ∣∣ 0xFF

hashed-len 8 = 0x00 hashed-len 8 = 0x00

hashed-len 7 = 0x00 hashed-len 7 = 0x00

hashed-len 6 = 0x00 hashed-len 6 = 0x00

hashed-len 5 = 0x00 or 0x01 sig-type = 0x00 or 0x01

4B hashed-len 1-4 ≥ 0 4B sig. creation date

v5
trailer

signature
meta data

8 byte
hashed
length

validly signed
document

data appended
to validly
signed document

forged document
for which signature
is valid

v3 trailer
(doc. signature)

©MTG AG Falko Strenzke 32/44

LibrePGP v5 - v3 Signatures Aliasing

hashed data for
a v5 document
signature

hashed data for
a v3 document
signature

document data document data

v5 = 0x05 v5 = 0x05

sig-type 0x00 sig-type 0x00

1B pk-algo pk-algo

1B hash-algo hash-algo

2B hashed subp len 2B hashed subp len

hashed subpackets hashed subpackets

1B content format 1B content format

1B length ∣∣ file name 1B length ∣∣ file name

4B date 4B date

v5 ∣∣ 0xFF v5 ∣∣ 0xFF

hashed-len 8 = 0x00 hashed-len 8 = 0x00

hashed-len 7 = 0x00 hashed-len 7 = 0x00

hashed-len 6 = 0x00 hashed-len 6 = 0x00

hashed-len 5 = 0x00 or 0x01 sig-type = 0x00 or 0x01

4B hashed-len 1-4 ≥ 0 4B sig. creation date

v5
trailer

signature
meta data

8 byte
hashed
length

validly signed
document

data appended
to validly
signed document

forged document
for which signature
is valid

v3 trailer
(doc. signature)

©MTG AG Falko Strenzke 32/44

LibrePGP v5 - v3 Signatures Aliasing

hashed data for
a v5 document
signature

hashed data for
a v3 document
signature

document data document data

v5 = 0x05 v5 = 0x05

sig-type 0x00 sig-type 0x00

1B pk-algo pk-algo

1B hash-algo hash-algo

2B hashed subp len 2B hashed subp len

hashed subpackets hashed subpackets

1B content format 1B content format

1B length ∣∣ file name 1B length ∣∣ file name

4B date 4B date

v5 ∣∣ 0xFF v5 ∣∣ 0xFF

hashed-len 8 = 0x00 hashed-len 8 = 0x00

hashed-len 7 = 0x00 hashed-len 7 = 0x00

hashed-len 6 = 0x00 hashed-len 6 = 0x00

hashed-len 5 = 0x00 or 0x01 sig-type = 0x00 or 0x01

4B hashed-len 1-4 ≥ 0 4B sig. creation date

v5
trailer

signature
meta data

8 byte
hashed
length

validly signed
document

data appended
to validly
signed document

forged document
for which signature
is valid

v3 trailer
(doc. signature)

©MTG AG Falko Strenzke 32/44

LibrePGP v5 - v3 Signatures Aliasing

hashed data for
a v5 document
signature

hashed data for
a v3 document
signature

document data document data

v5 = 0x05 v5 = 0x05

sig-type 0x00 sig-type 0x00

1B pk-algo pk-algo

1B hash-algo hash-algo

2B hashed subp len 2B hashed subp len

hashed subpackets hashed subpackets

1B content format 1B content format

1B length ∣∣ file name 1B length ∣∣ file name

4B date 4B date

v5 ∣∣ 0xFF v5 ∣∣ 0xFF

hashed-len 8 = 0x00 hashed-len 8 = 0x00

hashed-len 7 = 0x00 hashed-len 7 = 0x00

hashed-len 6 = 0x00 hashed-len 6 = 0x00

hashed-len 5 = 0x00 or 0x01 sig-type = 0x00 or 0x01

4B hashed-len 1-4 ≥ 0 4B sig. creation date

v5
trailer

signature
meta data

8 byte
hashed
length

validly signed
document

data appended
to validly
signed document

forged document
for which signature
is valid

v3 trailer
(doc. signature)

©MTG AG Falko Strenzke 32/44

LibrePGP v5 - v3 Signatures Aliasing

hashed data for
a v5 document
signature

hashed data for
a v3 document
signature

document data document data

v5 = 0x05 v5 = 0x05

sig-type 0x00 sig-type 0x00

1B pk-algo pk-algo

1B hash-algo hash-algo

2B hashed subp len 2B hashed subp len

hashed subpackets hashed subpackets

1B content format 1B content format

1B length ∣∣ file name 1B length ∣∣ file name

4B date 4B date

v5 ∣∣ 0xFF v5 ∣∣ 0xFF

hashed-len 8 = 0x00 hashed-len 8 = 0x00

hashed-len 7 = 0x00 hashed-len 7 = 0x00

hashed-len 6 = 0x00 hashed-len 6 = 0x00

hashed-len 5 = 0x00 or 0x01 sig-type = 0x00 or 0x01

4B hashed-len 1-4 ≥ 0 4B sig. creation date

v5
trailer

signature
meta data

8 byte
hashed
length

validly signed
document

data appended
to validly
signed document

forged document
for which signature
is valid

v3 trailer
(doc. signature)

©MTG AG Falko Strenzke 32/44

LibrePGP v5 - v3 Signatures Aliasing

hashed data for
a v5 document
signature

hashed data for
a v3 document
signature

document data document data

v5 = 0x05 v5 = 0x05

sig-type 0x00 sig-type 0x00

1B pk-algo pk-algo

1B hash-algo hash-algo

2B hashed subp len 2B hashed subp len

hashed subpackets hashed subpackets

1B content format 1B content format

1B length ∣∣ file name 1B length ∣∣ file name

4B date 4B date

v5 ∣∣ 0xFF v5 ∣∣ 0xFF

hashed-len 8 = 0x00 hashed-len 8 = 0x00

hashed-len 7 = 0x00 hashed-len 7 = 0x00

hashed-len 6 = 0x00 hashed-len 6 = 0x00

hashed-len 5 = 0x00 or 0x01 sig-type = 0x00 or 0x01

4B hashed-len 1-4 ≥ 0 4B sig. creation date

v5
trailer

signature
meta data

8 byte
hashed
length

validly signed
document

data appended
to validly
signed document

forged document
for which signature
is valid

v3 trailer
(doc. signature)

©MTG AG Falko Strenzke 32/44

LibrePGP v5 - v3 Signatures Aliasing

▸ v5 → v3 aliasing possible

▸ v3 signatures may still be verified

▸ v3 → v5 aliasing not possible:

▸ creation of v3 signatures disallowed (OpenPGP, LibrePGP)
▸ signature creation time would have to match the hashed length

▸ also other signatures types (e.g., signature over key) can be interpreted as v3
document signature

©MTG AG Falko Strenzke 33/44

LibrePGP v5 - v3 Signatures Aliasing

▸ v5 → v3 aliasing possible

▸ v3 signatures may still be verified

▸ v3 → v5 aliasing not possible:

▸ creation of v3 signatures disallowed (OpenPGP, LibrePGP)
▸ signature creation time would have to match the hashed length

▸ also other signatures types (e.g., signature over key) can be interpreted as v3
document signature

©MTG AG Falko Strenzke 33/44

LibrePGP v5 - v3 Signatures Aliasing

▸ v5 → v3 aliasing possible

▸ v3 signatures may still be verified

▸ v3 → v5 aliasing not possible:

▸ creation of v3 signatures disallowed (OpenPGP, LibrePGP)
▸ signature creation time would have to match the hashed length

▸ also other signatures types (e.g., signature over key) can be interpreted as v3
document signature

©MTG AG Falko Strenzke 33/44

LibrePGP v5 - v3 Signatures Aliasing

▸ v5 → v3 aliasing possible

▸ v3 signatures may still be verified

▸ v3 → v5 aliasing not possible:

▸ creation of v3 signatures disallowed (OpenPGP, LibrePGP)
▸ signature creation time would have to match the hashed length

▸ also other signatures types (e.g., signature over key) can be interpreted as v3
document signature

©MTG AG Falko Strenzke 33/44

LibrePGP v5 - v3 Signatures Aliasing

▸ v5 → v3 aliasing possible

▸ v3 signatures may still be verified

▸ v3 → v5 aliasing not possible:

▸ creation of v3 signatures disallowed (OpenPGP, LibrePGP)
▸ signature creation time would have to match the hashed length

▸ also other signatures types (e.g., signature over key) can be interpreted as v3
document signature

©MTG AG Falko Strenzke 33/44

LibrePGP v5 - v3 Signatures Aliasing

▸ v5 → v3 aliasing possible

▸ v3 signatures may still be verified

▸ v3 → v5 aliasing not possible:

▸ creation of v3 signatures disallowed (OpenPGP, LibrePGP)
▸ signature creation time would have to match the hashed length

▸ also other signatures types (e.g., signature over key) can be interpreted as v3
document signature

©MTG AG Falko Strenzke 33/44

Countermeasure in OpenPGP RFC 9580

▸ crypto-refresh had the same problem as now v5

▸ was reported by Demi Marie Obenour in GitHub

▸ fix in RFC 9580:

▸ revert from 8-byte hashed length to 4-byte
▸ prohibit signature type 0xFF

v3: msg sig-type 4B crea. time
v4: hashed-subp bd 0x04 0xFF 4B hashed length
v6: hashed-subp bd 0x06 0xFF 4B hashed length
v5: . . . 0x05 0x0FF hl8 hl7 hl6 hl5

´¸¶
0 or 1

low 4B of hashed len.

©MTG AG Falko Strenzke 34/44

Countermeasure in OpenPGP RFC 9580

▸ crypto-refresh had the same problem as now v5

▸ was reported by Demi Marie Obenour in GitHub

▸ fix in RFC 9580:

▸ revert from 8-byte hashed length to 4-byte
▸ prohibit signature type 0xFF

v3: msg sig-type 4B crea. time
v4: hashed-subp bd 0x04 0xFF 4B hashed length
v6: hashed-subp bd 0x06 0xFF 4B hashed length
v5: . . . 0x05 0x0FF hl8 hl7 hl6 hl5

´¸¶
0 or 1

low 4B of hashed len.

©MTG AG Falko Strenzke 34/44

Countermeasure in OpenPGP RFC 9580

▸ crypto-refresh had the same problem as now v5

▸ was reported by Demi Marie Obenour in GitHub

▸ fix in RFC 9580:

▸ revert from 8-byte hashed length to 4-byte
▸ prohibit signature type 0xFF

v3: msg sig-type 4B crea. time
v4: hashed-subp bd 0x04 0xFF 4B hashed length
v6: hashed-subp bd 0x06 0xFF 4B hashed length
v5: . . . 0x05 0x0FF hl8 hl7 hl6 hl5

´¸¶
0 or 1

low 4B of hashed len.

©MTG AG Falko Strenzke 34/44

Countermeasure in OpenPGP RFC 9580

▸ crypto-refresh had the same problem as now v5

▸ was reported by Demi Marie Obenour in GitHub

▸ fix in RFC 9580:

▸ revert from 8-byte hashed length to 4-byte
▸ prohibit signature type 0xFF

v3: msg sig-type 4B crea. time
v4: hashed-subp bd 0x04 0xFF 4B hashed length
v6: hashed-subp bd 0x06 0xFF 4B hashed length
v5: . . . 0x05 0x0FF hl8 hl7 hl6 hl5

´¸¶
0 or 1

low 4B of hashed len.

©MTG AG Falko Strenzke 34/44

Countermeasure in OpenPGP RFC 9580

▸ crypto-refresh had the same problem as now v5

▸ was reported by Demi Marie Obenour in GitHub

▸ fix in RFC 9580:

▸ revert from 8-byte hashed length to 4-byte
▸ prohibit signature type 0xFF

v3: msg sig-type 4B crea. time
v4: hashed-subp bd 0x04 0xFF 4B hashed length
v6: hashed-subp bd 0x06 0xFF 4B hashed length
v5: . . . 0x05 0x0FF hl8 hl7 hl6 hl5

´¸¶
0 or 1

low 4B of hashed len.

©MTG AG Falko Strenzke 34/44

Introduction

CMS: Old EUF-CMA Violations

CMS: (generalized) EUF-CMA Problem in Current Proposal for Composite Signatures

OpenPGP: Natural Strong Non-Separability of Composite Signatures

LibrePGP: EUF-CMA Violation through Signature Version Aliasing

OpenPGP: Unsigned Packet Meta Data

Other Aspects of Post Quantum Signatures in Protocols

©MTG AG Falko Strenzke 35/44

Unsigned Packet Meta Data in RFC 9580

▸ v4 signatures: Literal Data Packet header not signed

▸ RFC 9580: no change for v6

T ∣∣L1[∣∣L2∣∣L3∣∣L4] format f.name len filename date message

not part of signed data signed

▸ LibrePGP: header added to signed data for v5 signatures

©MTG AG Falko Strenzke 36/44

Unsigned Packet Meta Data in RFC 9580

▸ v4 signatures: Literal Data Packet header not signed

▸ RFC 9580: no change for v6

T ∣∣L1[∣∣L2∣∣L3∣∣L4] format f.name len filename date message

not part of signed data signed

▸ LibrePGP: header added to signed data for v5 signatures

©MTG AG Falko Strenzke 36/44

Unsigned Packet Meta Data in RFC 9580

▸ v4 signatures: Literal Data Packet header not signed

▸ RFC 9580: no change for v6

T ∣∣L1[∣∣L2∣∣L3∣∣L4] format f.name len filename date message

not part of signed data signed

▸ LibrePGP: header added to signed data for v5 signatures

©MTG AG Falko Strenzke 36/44

Unsigned Packet Meta Data in RFC 9580

▸ v4 signatures: Literal Data Packet header not signed

▸ RFC 9580: no change for v6

T ∣∣L1[∣∣L2∣∣L3∣∣L4] format f.name len filename date message

not part of signed data signed

▸ LibrePGP: header added to signed data for v5 signatures

©MTG AG Falko Strenzke 36/44

Introduction

CMS: Old EUF-CMA Violations

CMS: (generalized) EUF-CMA Problem in Current Proposal for Composite Signatures

OpenPGP: Natural Strong Non-Separability of Composite Signatures

LibrePGP: EUF-CMA Violation through Signature Version Aliasing

OpenPGP: Unsigned Packet Meta Data

Other Aspects of Post Quantum Signatures in Protocols

©MTG AG Falko Strenzke 37/44

ML-DSA and SLH-DSA security assumptions

▸ neither scheme follows hash-then-sign paradigm

▸ internal hashing
▸ internal-hash(salt ∣∣ len(ctx) ∣∣ ctx ∣∣ message)

©MTG AG Falko Strenzke 38/44

ML-DSA and SLH-DSA security assumptions

▸ neither scheme follows hash-then-sign paradigm

▸ internal hashing
▸ internal-hash(salt ∣∣ len(ctx) ∣∣ ctx ∣∣ message)

©MTG AG Falko Strenzke 38/44

ML-DSA and SLH-DSA security assumptions

▸ neither scheme follows hash-then-sign paradigm

▸ internal hashing
▸ internal-hash(salt ∣∣ len(ctx) ∣∣ ctx ∣∣ message)

©MTG AG Falko Strenzke 38/44

ML-DSA Design

▸ µ← H(H(public-key)∣∣M) // contributes to collision resistance

▸ uses per-key constant salt

▸ is one-pass over the message

©MTG AG Falko Strenzke 39/44

ML-DSA Design

▸ µ← H(H(public-key)∣∣M) // contributes to collision resistance

▸ uses per-key constant salt

▸ is one-pass over the message

©MTG AG Falko Strenzke 39/44

ML-DSA Design

▸ µ← H(H(public-key)∣∣M) // contributes to collision resistance

▸ uses per-key constant salt

▸ is one-pass over the message

©MTG AG Falko Strenzke 39/44

SLH-DSA Design

▸ choice

▸ opt rand← rnd
▸ opt rand← PK.seed

▸ R ← PRFmsg(SK .prf ,opt rand,PK.root,M) // M to hedge against RNG failure

▸ digest← Hmsg(R,PK.seed,PK.root,M) // improved collision resistance

▸ compute signature based on digest . . .

Ð→ pure SLH-DSA: signing, verification not on-line, no streaming
Ð→ need to resort to pre-hash variant for memory efficiency
Ð→ no increased collision resistance at all

©MTG AG Falko Strenzke 40/44

SLH-DSA Design

▸ choice

▸ opt rand← rnd
▸ opt rand← PK.seed

▸ R ← PRFmsg(SK .prf ,opt rand,PK.root,M) // M to hedge against RNG failure

▸ digest← Hmsg(R,PK.seed,PK.root,M) // improved collision resistance

▸ compute signature based on digest . . .

Ð→ pure SLH-DSA: signing, verification not on-line, no streaming
Ð→ need to resort to pre-hash variant for memory efficiency
Ð→ no increased collision resistance at all

©MTG AG Falko Strenzke 40/44

SLH-DSA Design

▸ choice

▸ opt rand← rnd
▸ opt rand← PK.seed

▸ R ← PRFmsg(SK .prf ,opt rand,PK.root,M) // M to hedge against RNG failure

▸ digest← Hmsg(R,PK.seed,PK.root,M) // improved collision resistance

▸ compute signature based on digest . . .

Ð→ pure SLH-DSA: signing, verification not on-line, no streaming
Ð→ need to resort to pre-hash variant for memory efficiency
Ð→ no increased collision resistance at all

©MTG AG Falko Strenzke 40/44

SLH-DSA Design

▸ choice

▸ opt rand← rnd
▸ opt rand← PK.seed

▸ R ← PRFmsg(SK .prf ,opt rand,PK.root,M) // M to hedge against RNG failure

▸ digest← Hmsg(R,PK.seed,PK.root,M) // improved collision resistance

▸ compute signature based on digest . . .

Ð→ pure SLH-DSA: signing, verification not on-line, no streaming
Ð→ need to resort to pre-hash variant for memory efficiency
Ð→ no increased collision resistance at all

©MTG AG Falko Strenzke 40/44

SLH-DSA Design

▸ choice

▸ opt rand← rnd
▸ opt rand← PK.seed

▸ R ← PRFmsg(SK .prf ,opt rand,PK.root,M) // M to hedge against RNG failure

▸ digest← Hmsg(R,PK.seed,PK.root,M) // improved collision resistance

▸ compute signature based on digest . . .

Ð→ pure SLH-DSA: signing, verification not on-line, no streaming
Ð→ need to resort to pre-hash variant for memory efficiency
Ð→ no increased collision resistance at all

©MTG AG Falko Strenzke 40/44

SLH-DSA Design

▸ choice

▸ opt rand← rnd
▸ opt rand← PK.seed

▸ R ← PRFmsg(SK .prf ,opt rand,PK.root,M) // M to hedge against RNG failure

▸ digest← Hmsg(R,PK.seed,PK.root,M) // improved collision resistance

▸ compute signature based on digest . . .

Ð→ pure SLH-DSA: signing, verification not on-line, no streaming
Ð→ need to resort to pre-hash variant for memory efficiency
Ð→ no increased collision resistance at all

©MTG AG Falko Strenzke 40/44

SLH-DSA Design

▸ choice

▸ opt rand← rnd
▸ opt rand← PK.seed

▸ R ← PRFmsg(SK .prf ,opt rand,PK.root,M) // M to hedge against RNG failure

▸ digest← Hmsg(R,PK.seed,PK.root,M) // improved collision resistance

▸ compute signature based on digest . . .

Ð→ pure SLH-DSA: signing, verification not on-line, no streaming

Ð→ need to resort to pre-hash variant for memory efficiency
Ð→ no increased collision resistance at all

©MTG AG Falko Strenzke 40/44

SLH-DSA Design

▸ choice

▸ opt rand← rnd
▸ opt rand← PK.seed

▸ R ← PRFmsg(SK .prf ,opt rand,PK.root,M) // M to hedge against RNG failure

▸ digest← Hmsg(R,PK.seed,PK.root,M) // improved collision resistance

▸ compute signature based on digest . . .

Ð→ pure SLH-DSA: signing, verification not on-line, no streaming
Ð→ need to resort to pre-hash variant for memory efficiency

Ð→ no increased collision resistance at all

©MTG AG Falko Strenzke 40/44

SLH-DSA Design

▸ choice

▸ opt rand← rnd
▸ opt rand← PK.seed

▸ R ← PRFmsg(SK .prf ,opt rand,PK.root,M) // M to hedge against RNG failure

▸ digest← Hmsg(R,PK.seed,PK.root,M) // improved collision resistance

▸ compute signature based on digest . . .

Ð→ pure SLH-DSA: signing, verification not on-line, no streaming
Ð→ need to resort to pre-hash variant for memory efficiency
Ð→ no increased collision resistance at all

©MTG AG Falko Strenzke 40/44

ML-DSA and SLH-DSA in OpenPGP

▸ OpenPGP: bound to hash-then-sign

▸ compute hash
▸ sign the digest with “pure” variant (current proposal)
▸ → no two-pass-problem with SLH-DSA

▸ RFC 9580: v6 signatures

▸ prefixes random salt on protocol level
▸ → no dependence on collision resistance of hash function

▸ LibrePGP: v5 signatures

▸ no random salt on protocol level
▸ doesn’t define PQC signatures yet

▸ CMS:

▸ no random salt on protocol level

©MTG AG Falko Strenzke 41/44

ML-DSA and SLH-DSA in OpenPGP

▸ OpenPGP: bound to hash-then-sign

▸ compute hash
▸ sign the digest with “pure” variant (current proposal)
▸ → no two-pass-problem with SLH-DSA

▸ RFC 9580: v6 signatures

▸ prefixes random salt on protocol level
▸ → no dependence on collision resistance of hash function

▸ LibrePGP: v5 signatures

▸ no random salt on protocol level
▸ doesn’t define PQC signatures yet

▸ CMS:

▸ no random salt on protocol level

©MTG AG Falko Strenzke 41/44

ML-DSA and SLH-DSA in OpenPGP

▸ OpenPGP: bound to hash-then-sign

▸ compute hash
▸ sign the digest with “pure” variant (current proposal)
▸ → no two-pass-problem with SLH-DSA

▸ RFC 9580: v6 signatures

▸ prefixes random salt on protocol level
▸ → no dependence on collision resistance of hash function

▸ LibrePGP: v5 signatures

▸ no random salt on protocol level
▸ doesn’t define PQC signatures yet

▸ CMS:

▸ no random salt on protocol level

©MTG AG Falko Strenzke 41/44

ML-DSA and SLH-DSA in OpenPGP

▸ OpenPGP: bound to hash-then-sign

▸ compute hash
▸ sign the digest with “pure” variant (current proposal)
▸ → no two-pass-problem with SLH-DSA

▸ RFC 9580: v6 signatures

▸ prefixes random salt on protocol level
▸ → no dependence on collision resistance of hash function

▸ LibrePGP: v5 signatures

▸ no random salt on protocol level
▸ doesn’t define PQC signatures yet

▸ CMS:

▸ no random salt on protocol level

©MTG AG Falko Strenzke 41/44

ML-DSA and SLH-DSA in OpenPGP

▸ OpenPGP: bound to hash-then-sign

▸ compute hash
▸ sign the digest with “pure” variant (current proposal)
▸ → no two-pass-problem with SLH-DSA

▸ RFC 9580: v6 signatures

▸ prefixes random salt on protocol level
▸ → no dependence on collision resistance of hash function

▸ LibrePGP: v5 signatures

▸ no random salt on protocol level
▸ doesn’t define PQC signatures yet

▸ CMS:

▸ no random salt on protocol level

©MTG AG Falko Strenzke 41/44

ML-DSA and SLH-DSA in OpenPGP

▸ OpenPGP: bound to hash-then-sign

▸ compute hash
▸ sign the digest with “pure” variant (current proposal)
▸ → no two-pass-problem with SLH-DSA

▸ RFC 9580: v6 signatures

▸ prefixes random salt on protocol level
▸ → no dependence on collision resistance of hash function

▸ LibrePGP: v5 signatures

▸ no random salt on protocol level
▸ doesn’t define PQC signatures yet

▸ CMS:

▸ no random salt on protocol level

©MTG AG Falko Strenzke 41/44

ML-DSA and SLH-DSA in OpenPGP

▸ OpenPGP: bound to hash-then-sign

▸ compute hash
▸ sign the digest with “pure” variant (current proposal)
▸ → no two-pass-problem with SLH-DSA

▸ RFC 9580: v6 signatures

▸ prefixes random salt on protocol level
▸ → no dependence on collision resistance of hash function

▸ LibrePGP: v5 signatures

▸ no random salt on protocol level
▸ doesn’t define PQC signatures yet

▸ CMS:

▸ no random salt on protocol level

©MTG AG Falko Strenzke 41/44

ML-DSA and SLH-DSA in OpenPGP

▸ OpenPGP: bound to hash-then-sign

▸ compute hash
▸ sign the digest with “pure” variant (current proposal)
▸ → no two-pass-problem with SLH-DSA

▸ RFC 9580: v6 signatures

▸ prefixes random salt on protocol level
▸ → no dependence on collision resistance of hash function

▸ LibrePGP: v5 signatures

▸ no random salt on protocol level
▸ doesn’t define PQC signatures yet

▸ CMS:

▸ no random salt on protocol level

©MTG AG Falko Strenzke 41/44

ML-DSA and SLH-DSA in OpenPGP

▸ OpenPGP: bound to hash-then-sign

▸ compute hash
▸ sign the digest with “pure” variant (current proposal)
▸ → no two-pass-problem with SLH-DSA

▸ RFC 9580: v6 signatures

▸ prefixes random salt on protocol level
▸ → no dependence on collision resistance of hash function

▸ LibrePGP: v5 signatures

▸ no random salt on protocol level
▸ doesn’t define PQC signatures yet

▸ CMS:

▸ no random salt on protocol level

©MTG AG Falko Strenzke 41/44

ML-DSA and SLH-DSA in OpenPGP

▸ OpenPGP: bound to hash-then-sign

▸ compute hash
▸ sign the digest with “pure” variant (current proposal)
▸ → no two-pass-problem with SLH-DSA

▸ RFC 9580: v6 signatures

▸ prefixes random salt on protocol level
▸ → no dependence on collision resistance of hash function

▸ LibrePGP: v5 signatures

▸ no random salt on protocol level
▸ doesn’t define PQC signatures yet

▸ CMS:

▸ no random salt on protocol level

©MTG AG Falko Strenzke 41/44

ML-DSA and SLH-DSA in OpenPGP

▸ OpenPGP: bound to hash-then-sign

▸ compute hash
▸ sign the digest with “pure” variant (current proposal)
▸ → no two-pass-problem with SLH-DSA

▸ RFC 9580: v6 signatures

▸ prefixes random salt on protocol level
▸ → no dependence on collision resistance of hash function

▸ LibrePGP: v5 signatures

▸ no random salt on protocol level
▸ doesn’t define PQC signatures yet

▸ CMS:

▸ no random salt on protocol level

©MTG AG Falko Strenzke 41/44

ML-DSA and SLH-DSA in OpenPGP

▸ OpenPGP: bound to hash-then-sign

▸ compute hash
▸ sign the digest with “pure” variant (current proposal)
▸ → no two-pass-problem with SLH-DSA

▸ RFC 9580: v6 signatures

▸ prefixes random salt on protocol level
▸ → no dependence on collision resistance of hash function

▸ LibrePGP: v5 signatures

▸ no random salt on protocol level
▸ doesn’t define PQC signatures yet

▸ CMS:

▸ no random salt on protocol level

©MTG AG Falko Strenzke 41/44

Pre-hash variant

▸ FIPS 204, 205 for ML-DSA and SLH-DSA define pre-hash-variant

▸ compute hash in the application
▸ provide hash value to the signature function

▸ pre-hash variant ensures:

▸ domain separation from pure variant
▸ prevents digest substitution attacks

▸ this attack requires finding 2nd preimage
▸ “fixes” the pre-hash hash algorithm with the strength of the internal hash

▸ neither is needed for OpenPGP:

▸ OpenPGP already has hash-algo in signature meta data → domain separation
▸ PQC signature draft defines only single hash algorithm → no digest substitution

©MTG AG Falko Strenzke 42/44

Pre-hash variant

▸ FIPS 204, 205 for ML-DSA and SLH-DSA define pre-hash-variant

▸ compute hash in the application
▸ provide hash value to the signature function

▸ pre-hash variant ensures:

▸ domain separation from pure variant
▸ prevents digest substitution attacks

▸ this attack requires finding 2nd preimage
▸ “fixes” the pre-hash hash algorithm with the strength of the internal hash

▸ neither is needed for OpenPGP:

▸ OpenPGP already has hash-algo in signature meta data → domain separation
▸ PQC signature draft defines only single hash algorithm → no digest substitution

©MTG AG Falko Strenzke 42/44

Pre-hash variant

▸ FIPS 204, 205 for ML-DSA and SLH-DSA define pre-hash-variant

▸ compute hash in the application
▸ provide hash value to the signature function

▸ pre-hash variant ensures:

▸ domain separation from pure variant
▸ prevents digest substitution attacks

▸ this attack requires finding 2nd preimage
▸ “fixes” the pre-hash hash algorithm with the strength of the internal hash

▸ neither is needed for OpenPGP:

▸ OpenPGP already has hash-algo in signature meta data → domain separation
▸ PQC signature draft defines only single hash algorithm → no digest substitution

©MTG AG Falko Strenzke 42/44

Pre-hash variant

▸ FIPS 204, 205 for ML-DSA and SLH-DSA define pre-hash-variant

▸ compute hash in the application
▸ provide hash value to the signature function

▸ pre-hash variant ensures:

▸ domain separation from pure variant
▸ prevents digest substitution attacks

▸ this attack requires finding 2nd preimage
▸ “fixes” the pre-hash hash algorithm with the strength of the internal hash

▸ neither is needed for OpenPGP:

▸ OpenPGP already has hash-algo in signature meta data → domain separation
▸ PQC signature draft defines only single hash algorithm → no digest substitution

©MTG AG Falko Strenzke 42/44

Pre-hash variant

▸ FIPS 204, 205 for ML-DSA and SLH-DSA define pre-hash-variant

▸ compute hash in the application
▸ provide hash value to the signature function

▸ pre-hash variant ensures:

▸ domain separation from pure variant
▸ prevents digest substitution attacks

▸ this attack requires finding 2nd preimage
▸ “fixes” the pre-hash hash algorithm with the strength of the internal hash

▸ neither is needed for OpenPGP:

▸ OpenPGP already has hash-algo in signature meta data → domain separation
▸ PQC signature draft defines only single hash algorithm → no digest substitution

©MTG AG Falko Strenzke 42/44

Pre-hash variant

▸ FIPS 204, 205 for ML-DSA and SLH-DSA define pre-hash-variant

▸ compute hash in the application
▸ provide hash value to the signature function

▸ pre-hash variant ensures:

▸ domain separation from pure variant
▸ prevents digest substitution attacks

▸ this attack requires finding 2nd preimage
▸ “fixes” the pre-hash hash algorithm with the strength of the internal hash

▸ neither is needed for OpenPGP:

▸ OpenPGP already has hash-algo in signature meta data → domain separation
▸ PQC signature draft defines only single hash algorithm → no digest substitution

©MTG AG Falko Strenzke 42/44

Pre-hash variant

▸ FIPS 204, 205 for ML-DSA and SLH-DSA define pre-hash-variant

▸ compute hash in the application
▸ provide hash value to the signature function

▸ pre-hash variant ensures:

▸ domain separation from pure variant
▸ prevents digest substitution attacks

▸ this attack requires finding 2nd preimage
▸ “fixes” the pre-hash hash algorithm with the strength of the internal hash

▸ neither is needed for OpenPGP:

▸ OpenPGP already has hash-algo in signature meta data → domain separation
▸ PQC signature draft defines only single hash algorithm → no digest substitution

©MTG AG Falko Strenzke 42/44

Pre-hash variant

▸ FIPS 204, 205 for ML-DSA and SLH-DSA define pre-hash-variant

▸ compute hash in the application
▸ provide hash value to the signature function

▸ pre-hash variant ensures:

▸ domain separation from pure variant
▸ prevents digest substitution attacks

▸ this attack requires finding 2nd preimage
▸ “fixes” the pre-hash hash algorithm with the strength of the internal hash

▸ neither is needed for OpenPGP:

▸ OpenPGP already has hash-algo in signature meta data → domain separation
▸ PQC signature draft defines only single hash algorithm → no digest substitution

©MTG AG Falko Strenzke 42/44

Pre-hash variant

▸ FIPS 204, 205 for ML-DSA and SLH-DSA define pre-hash-variant

▸ compute hash in the application
▸ provide hash value to the signature function

▸ pre-hash variant ensures:

▸ domain separation from pure variant
▸ prevents digest substitution attacks

▸ this attack requires finding 2nd preimage
▸ “fixes” the pre-hash hash algorithm with the strength of the internal hash

▸ neither is needed for OpenPGP:

▸ OpenPGP already has hash-algo in signature meta data → domain separation
▸ PQC signature draft defines only single hash algorithm → no digest substitution

©MTG AG Falko Strenzke 42/44

Pre-hash variant

▸ FIPS 204, 205 for ML-DSA and SLH-DSA define pre-hash-variant

▸ compute hash in the application
▸ provide hash value to the signature function

▸ pre-hash variant ensures:

▸ domain separation from pure variant
▸ prevents digest substitution attacks

▸ this attack requires finding 2nd preimage
▸ “fixes” the pre-hash hash algorithm with the strength of the internal hash

▸ neither is needed for OpenPGP:

▸ OpenPGP already has hash-algo in signature meta data → domain separation
▸ PQC signature draft defines only single hash algorithm → no digest substitution

©MTG AG Falko Strenzke 42/44

Pre-hash variant

▸ FIPS 204, 205 for ML-DSA and SLH-DSA define pre-hash-variant

▸ compute hash in the application
▸ provide hash value to the signature function

▸ pre-hash variant ensures:

▸ domain separation from pure variant
▸ prevents digest substitution attacks

▸ this attack requires finding 2nd preimage
▸ “fixes” the pre-hash hash algorithm with the strength of the internal hash

▸ neither is needed for OpenPGP:

▸ OpenPGP already has hash-algo in signature meta data → domain separation
▸ PQC signature draft defines only single hash algorithm → no digest substitution

©MTG AG Falko Strenzke 42/44

Conclusion

▸ old and new (generalized) EUF-CMA problems in CMS

▸ also in LibrePGP

▸ problems with signature meta data

▸ CMS: missing totally
▸ LibrePGP: not uniquely parseable

▸ CMS: composite signatures give rise to “signature combiner”

▸ currently with (generalized) EUF-CMA problem

©MTG AG Falko Strenzke 43/44

Conclusion

▸ old and new (generalized) EUF-CMA problems in CMS

▸ also in LibrePGP

▸ problems with signature meta data

▸ CMS: missing totally
▸ LibrePGP: not uniquely parseable

▸ CMS: composite signatures give rise to “signature combiner”

▸ currently with (generalized) EUF-CMA problem

©MTG AG Falko Strenzke 43/44

Conclusion

▸ old and new (generalized) EUF-CMA problems in CMS

▸ also in LibrePGP

▸ problems with signature meta data

▸ CMS: missing totally
▸ LibrePGP: not uniquely parseable

▸ CMS: composite signatures give rise to “signature combiner”

▸ currently with (generalized) EUF-CMA problem

©MTG AG Falko Strenzke 43/44

Conclusion

▸ old and new (generalized) EUF-CMA problems in CMS

▸ also in LibrePGP

▸ problems with signature meta data

▸ CMS: missing totally
▸ LibrePGP: not uniquely parseable

▸ CMS: composite signatures give rise to “signature combiner”

▸ currently with (generalized) EUF-CMA problem

©MTG AG Falko Strenzke 43/44

Conclusion

▸ old and new (generalized) EUF-CMA problems in CMS

▸ also in LibrePGP

▸ problems with signature meta data

▸ CMS: missing totally
▸ LibrePGP: not uniquely parseable

▸ CMS: composite signatures give rise to “signature combiner”

▸ currently with (generalized) EUF-CMA problem

©MTG AG Falko Strenzke 43/44

Conclusion

▸ old and new (generalized) EUF-CMA problems in CMS

▸ also in LibrePGP

▸ problems with signature meta data

▸ CMS: missing totally
▸ LibrePGP: not uniquely parseable

▸ CMS: composite signatures give rise to “signature combiner”

▸ currently with (generalized) EUF-CMA problem

©MTG AG Falko Strenzke 43/44

Conclusion

▸ old and new (generalized) EUF-CMA problems in CMS

▸ also in LibrePGP

▸ problems with signature meta data

▸ CMS: missing totally
▸ LibrePGP: not uniquely parseable

▸ CMS: composite signatures give rise to “signature combiner”

▸ currently with (generalized) EUF-CMA problem

©MTG AG Falko Strenzke 43/44

Thank you for your attention

Dr. Falko Strenzke
falko.strenzke@mtg.de
+49 6151 8000-24

MTG AG
www.mtg.de

©MTG AG Falko Strenzke 44/44

	Introduction
	CMS: Old EUF-CMA Violations
	CMS: (generalized) EUF-CMA Problem in Current Proposal for Composite Signatures
	OpenPGP: Natural Strong Non-Separability of Composite Signatures
	LibrePGP: EUF-CMA Violation through Signature Version Aliasing
	OpenPGP: Unsigned Packet Meta Data
	Other Aspects of Post Quantum Signatures in Protocols

