
Legacy Encryption Downgrade Attacks against LibrePGP
and CMS
Work in the scope of Project 480 – “PQC@Thunderbird”

©MTG AG Falko Strenzke, Johannes Roth 1/47

Legacy Encryption Downgrade Attacks against LibrePGP
and CMS

▸ work in the scope of Project 480 – “PQC@Thunderbird”

▸ Legacy encryption: encryption modes w/o integrity protection

▸ Target “modern encryption” modes in
▸ Cryptographic Message Syntax

▸ X.509 certificates
▸ basis for S/MIME

▸ LibrePGP

▸ a recent fork of the OpenPGP standard

©MTG AG Falko Strenzke, Johannes Roth 2/47

Legacy Encryption Downgrade Attacks against LibrePGP
and CMS

▸ work in the scope of Project 480 – “PQC@Thunderbird”

▸ Legacy encryption: encryption modes w/o integrity protection

▸ Target “modern encryption” modes in
▸ Cryptographic Message Syntax

▸ X.509 certificates
▸ basis for S/MIME

▸ LibrePGP

▸ a recent fork of the OpenPGP standard

©MTG AG Falko Strenzke, Johannes Roth 2/47

Legacy Encryption Downgrade Attacks against LibrePGP
and CMS

▸ work in the scope of Project 480 – “PQC@Thunderbird”

▸ Legacy encryption: encryption modes w/o integrity protection

▸ Target “modern encryption” modes in
▸ Cryptographic Message Syntax

▸ X.509 certificates
▸ basis for S/MIME

▸ LibrePGP

▸ a recent fork of the OpenPGP standard

©MTG AG Falko Strenzke, Johannes Roth 2/47

Legacy Encryption Downgrade Attacks against LibrePGP
and CMS

▸ work in the scope of Project 480 – “PQC@Thunderbird”

▸ Legacy encryption: encryption modes w/o integrity protection

▸ Target “modern encryption” modes in
▸ Cryptographic Message Syntax

▸ X.509 certificates
▸ basis for S/MIME

▸ LibrePGP

▸ a recent fork of the OpenPGP standard

©MTG AG Falko Strenzke, Johannes Roth 2/47

Legacy Encryption Downgrade Attacks against LibrePGP
and CMS

▸ work in the scope of Project 480 – “PQC@Thunderbird”

▸ Legacy encryption: encryption modes w/o integrity protection

▸ Target “modern encryption” modes in
▸ Cryptographic Message Syntax

▸ X.509 certificates
▸ basis for S/MIME

▸ LibrePGP

▸ a recent fork of the OpenPGP standard

©MTG AG Falko Strenzke, Johannes Roth 2/47

Legacy Encryption Downgrade Attacks against LibrePGP
and CMS

▸ work in the scope of Project 480 – “PQC@Thunderbird”

▸ Legacy encryption: encryption modes w/o integrity protection

▸ Target “modern encryption” modes in
▸ Cryptographic Message Syntax

▸ X.509 certificates
▸ basis for S/MIME

▸ LibrePGP

▸ a recent fork of the OpenPGP standard

©MTG AG Falko Strenzke, Johannes Roth 2/47

Legacy Encryption Downgrade Attacks against LibrePGP
and CMS

▸ work in the scope of Project 480 – “PQC@Thunderbird”

▸ Legacy encryption: encryption modes w/o integrity protection

▸ Target “modern encryption” modes in
▸ Cryptographic Message Syntax

▸ X.509 certificates
▸ basis for S/MIME

▸ LibrePGP

▸ a recent fork of the OpenPGP standard

©MTG AG Falko Strenzke, Johannes Roth 2/47

Legacy Encryption Downgrade Attacks against LibrePGP
and CMS

▸ work in the scope of Project 480 – “PQC@Thunderbird”

▸ Legacy encryption: encryption modes w/o integrity protection

▸ Target “modern encryption” modes in
▸ Cryptographic Message Syntax

▸ X.509 certificates
▸ basis for S/MIME

▸ LibrePGP

▸ a recent fork of the OpenPGP standard

©MTG AG Falko Strenzke, Johannes Roth 2/47

Legacy Encryption Downgrade Attacks against LibrePGP
and CMS

Introduction

Decryption Oracle Attacks against Cryptographic Message Syntax

Plaintext manipulation attacks against LibrePGP AEAD

Plaintext recovery for low entropy blocks in LibrePGP OCB Packets

Legacy Mode Downgrade Attacks against AES Key Wrap

Conclusion

©MTG AG Falko Strenzke, Johannes Roth 3/47

Introduction

Decryption Oracle Attacks against Cryptographic Message Syntax

Plaintext manipulation attacks against LibrePGP AEAD

Plaintext recovery for low entropy blocks in LibrePGP OCB Packets

Legacy Mode Downgrade Attacks against AES Key Wrap

Conclusion

©MTG AG Falko Strenzke, Johannes Roth 4/47

Classical Decryption Oracle Attacks

▸ Goal: decryption of messages

▸ Asymmetric

▸ Bleichenbacher’s padding oracle attack against RSA with PKCS#1 v1.5 padding
▸ Manger’s Attack against RSA with OAEP padding

▸ Symmetric
▸ Vaudenay’s CBC padding oracle attacks

▸ error answer based on correct or incorrect padding

▸ Format oracles

▸ plaintext processing checks format (character set, etc.)

Sender Attacker Oracle

R b

R µ
R µ

R b
or

�/ �

©MTG AG Falko Strenzke, Johannes Roth 5/47

Classical Decryption Oracle Attacks

▸ Goal: decryption of messages

▸ Asymmetric

▸ Bleichenbacher’s padding oracle attack against RSA with PKCS#1 v1.5 padding
▸ Manger’s Attack against RSA with OAEP padding

▸ Symmetric
▸ Vaudenay’s CBC padding oracle attacks

▸ error answer based on correct or incorrect padding

▸ Format oracles

▸ plaintext processing checks format (character set, etc.)

Sender Attacker Oracle

R b

R µ
R µ

R b
or

�/ �

©MTG AG Falko Strenzke, Johannes Roth 5/47

Classical Decryption Oracle Attacks

▸ Goal: decryption of messages

▸ Asymmetric

▸ Bleichenbacher’s padding oracle attack against RSA with PKCS#1 v1.5 padding
▸ Manger’s Attack against RSA with OAEP padding

▸ Symmetric
▸ Vaudenay’s CBC padding oracle attacks

▸ error answer based on correct or incorrect padding

▸ Format oracles

▸ plaintext processing checks format (character set, etc.)

Sender Attacker Oracle

R b

R µ
R µ

R b
or

�/ �

©MTG AG Falko Strenzke, Johannes Roth 5/47

Classical Decryption Oracle Attacks

▸ Goal: decryption of messages

▸ Asymmetric

▸ Bleichenbacher’s padding oracle attack against RSA with PKCS#1 v1.5 padding
▸ Manger’s Attack against RSA with OAEP padding

▸ Symmetric
▸ Vaudenay’s CBC padding oracle attacks

▸ error answer based on correct or incorrect padding

▸ Format oracles

▸ plaintext processing checks format (character set, etc.)

Sender Attacker Oracle

R b

R µ
R µ

R b
or

�/ �

©MTG AG Falko Strenzke, Johannes Roth 5/47

Classical Decryption Oracle Attacks

▸ Goal: decryption of messages

▸ Asymmetric

▸ Bleichenbacher’s padding oracle attack against RSA with PKCS#1 v1.5 padding
▸ Manger’s Attack against RSA with OAEP padding

▸ Symmetric
▸ Vaudenay’s CBC padding oracle attacks

▸ error answer based on correct or incorrect padding

▸ Format oracles

▸ plaintext processing checks format (character set, etc.)

Sender Attacker Oracle

R b

R µ
R µ

R b
or

�/ �

©MTG AG Falko Strenzke, Johannes Roth 5/47

Classical Decryption Oracle Attacks

▸ Goal: decryption of messages

▸ Asymmetric

▸ Bleichenbacher’s padding oracle attack against RSA with PKCS#1 v1.5 padding
▸ Manger’s Attack against RSA with OAEP padding

▸ Symmetric
▸ Vaudenay’s CBC padding oracle attacks

▸ error answer based on correct or incorrect padding

▸ Format oracles

▸ plaintext processing checks format (character set, etc.)

Sender Attacker Oracle

R b

R µ
R µ

R b
or

�/ �

©MTG AG Falko Strenzke, Johannes Roth 5/47

Classical Decryption Oracle Attacks

▸ Goal: decryption of messages

▸ Asymmetric

▸ Bleichenbacher’s padding oracle attack against RSA with PKCS#1 v1.5 padding
▸ Manger’s Attack against RSA with OAEP padding

▸ Symmetric
▸ Vaudenay’s CBC padding oracle attacks

▸ error answer based on correct or incorrect padding

▸ Format oracles

▸ plaintext processing checks format (character set, etc.)

Sender Attacker Oracle

R b

R µ
R µ

R b
or

�/ �

©MTG AG Falko Strenzke, Johannes Roth 5/47

Classical Decryption Oracle Attacks

▸ Goal: decryption of messages

▸ Asymmetric

▸ Bleichenbacher’s padding oracle attack against RSA with PKCS#1 v1.5 padding
▸ Manger’s Attack against RSA with OAEP padding

▸ Symmetric
▸ Vaudenay’s CBC padding oracle attacks

▸ error answer based on correct or incorrect padding

▸ Format oracles

▸ plaintext processing checks format (character set, etc.)

Sender Attacker Oracle

R b

R µ
R µ

R b
or

�/ �

©MTG AG Falko Strenzke, Johannes Roth 5/47

Classical Decryption Oracle Attacks

▸ Goal: decryption of messages

▸ Asymmetric

▸ Bleichenbacher’s padding oracle attack against RSA with PKCS#1 v1.5 padding
▸ Manger’s Attack against RSA with OAEP padding

▸ Symmetric
▸ Vaudenay’s CBC padding oracle attacks

▸ error answer based on correct or incorrect padding

▸ Format oracles

▸ plaintext processing checks format (character set, etc.)

Sender Attacker Oracle

R b

R µ
R µ

R b
or

�/ �

©MTG AG Falko Strenzke, Johannes Roth 5/47

Decryption Oracle Attack against OpenPGP SED Packets

Alice Eve Bob

message plaintext

m Ym

m′ m′

"as2§$a%_- \’B\¿

Y
learn related plaintext,

recover plaintext

CFB-encryptK ()

2 transformation

CFB-decryptK ()

©MTG AG Falko Strenzke, Johannes Roth 6/47

CFB decryption and its malleability
IV

AES-encryptk()

⊕

ciphertext 1

plaintext 1

⊕1

⊕1

AES-encryptk()

⊕

ciphertext 2

corrupted

plaintext 2

ability to mask actual
plaintext in a reversible way

©MTG AG Falko Strenzke, Johannes Roth 7/47

CFB decryption and its malleability
IV

AES-encryptk()

⊕

ciphertext 1

plaintext 1

⊕1

⊕1

AES-encryptk()

⊕

ciphertext 2

corrupted

plaintext 2

ability to mask actual
plaintext in a reversible way

©MTG AG Falko Strenzke, Johannes Roth 7/47

CFB decryption and its malleability
IV

AES-encryptk()

⊕

ciphertext 1

plaintext 1

⊕1

⊕1

AES-encryptk()

⊕

ciphertext 2

corrupted

plaintext 2

ability to mask actual
plaintext in a reversible way

©MTG AG Falko Strenzke, Johannes Roth 7/47

CFB decryption and its malleability
IV

AES-encryptk()

⊕

ciphertext 1

plaintext 1

⊕1

⊕1

AES-encryptk()

⊕

ciphertext 2

corrupted

plaintext 2

ability to mask actual
plaintext in a reversible way

©MTG AG Falko Strenzke, Johannes Roth 7/47

CBC decryption and its malleability

ciphertext 1

AES-decryptk()

⊕

plaintext 1

ciphertext 2

AES-decryptk()

⊕

plaintext 2

ciphertext 3

AES-decryptk()

⊕

plaintext 3

IV

⊕1

⊕1

corrupted

plaintext 2

. . . ∣∣ 3 ∣∣ 3 ∣∣ 3
Final padding.
Padding check
as oracle!

⊕x

�/ �CBC decryption oracle = ECB decryption oracle

ECB decrypted

©MTG AG Falko Strenzke, Johannes Roth 8/47

CBC decryption and its malleability

ciphertext 1

AES-decryptk()

⊕

plaintext 1

ciphertext 2

AES-decryptk()

⊕

plaintext 2

ciphertext 3

AES-decryptk()

⊕

plaintext 3

IV

⊕1

⊕1

corrupted

plaintext 2

. . . ∣∣ 3 ∣∣ 3 ∣∣ 3
Final padding.
Padding check
as oracle!

⊕x

�/ �CBC decryption oracle = ECB decryption oracle

ECB decrypted

©MTG AG Falko Strenzke, Johannes Roth 8/47

CBC decryption and its malleability

ciphertext 1

AES-decryptk()

⊕

plaintext 1

ciphertext 2

AES-decryptk()

⊕

plaintext 2

ciphertext 3

AES-decryptk()

⊕

plaintext 3

IV

⊕1

⊕1

corrupted

plaintext 2

. . . ∣∣ 3 ∣∣ 3 ∣∣ 3
Final padding.
Padding check
as oracle!

⊕x

�/ �CBC decryption oracle = ECB decryption oracle

ECB decrypted

©MTG AG Falko Strenzke, Johannes Roth 8/47

CBC decryption and its malleability

ciphertext 1

AES-decryptk()

⊕

plaintext 1

ciphertext 2

AES-decryptk()

⊕

plaintext 2

ciphertext 3

AES-decryptk()

⊕

plaintext 3

IV

⊕1

⊕1

corrupted

plaintext 2

. . . ∣∣ 3 ∣∣ 3 ∣∣ 3
Final padding.
Padding check
as oracle!

⊕x

�/ �CBC decryption oracle = ECB decryption oracle

ECB decrypted

©MTG AG Falko Strenzke, Johannes Roth 8/47

CBC decryption and its malleability

ciphertext 1

AES-decryptk()

⊕

plaintext 1

ciphertext 2

AES-decryptk()

⊕

plaintext 2

ciphertext 3

AES-decryptk()

⊕

plaintext 3

IV

⊕1

⊕1

corrupted

plaintext 2

. . . ∣∣ 3 ∣∣ 3 ∣∣ 3
Final padding.
Padding check
as oracle!

⊕x

�/ �CBC decryption oracle = ECB decryption oracle

ECB decrypted

©MTG AG Falko Strenzke, Johannes Roth 8/47

CBC decryption and its malleability

ciphertext 1

AES-decryptk()

⊕

plaintext 1

ciphertext 2

AES-decryptk()

⊕

plaintext 2

ciphertext 3

AES-decryptk()

⊕

plaintext 3

IV

⊕1

⊕1

corrupted

plaintext 2

. . . ∣∣ 3 ∣∣ 3 ∣∣ 3
Final padding.
Padding check
as oracle!

⊕x

�/ �

CBC decryption oracle = ECB decryption oracle

ECB decrypted

©MTG AG Falko Strenzke, Johannes Roth 8/47

CBC decryption and its malleability

ciphertext 1

AES-decryptk()

⊕

plaintext 1

ciphertext 2

AES-decryptk()

⊕

plaintext 2

ciphertext 3

AES-decryptk()

⊕

plaintext 3

IV

⊕1

⊕1

corrupted

plaintext 2

. . . ∣∣ 3 ∣∣ 3 ∣∣ 3
Final padding.
Padding check
as oracle!

⊕x

�/ �

CBC decryption oracle = ECB decryption oracle

ECB decrypted

©MTG AG Falko Strenzke, Johannes Roth 8/47

Decryption oracle attacks against modern cipher modes

▸ Classical oracle attacks

▸ ◎ target ciphertext: CFB
▸ b ciphertext decrypted by the oracle: CFB

▸ Oracle attacks using downgrades

▸ ◎ target ciphertext: AEAD or AES Key Wrap

▸ b ciphertext decrypted by the oracle: CFB (or CBC)

©MTG AG Falko Strenzke, Johannes Roth 9/47

Decryption oracle attacks against modern cipher modes

▸ Classical oracle attacks

▸ ◎ target ciphertext: CFB
▸ b ciphertext decrypted by the oracle: CFB

▸ Oracle attacks using downgrades

▸ ◎ target ciphertext: AEAD or AES Key Wrap

▸ b ciphertext decrypted by the oracle: CFB (or CBC)

©MTG AG Falko Strenzke, Johannes Roth 9/47

Decryption oracle attacks against modern cipher modes

▸ Classical oracle attacks

▸ ◎ target ciphertext: CFB
▸ b ciphertext decrypted by the oracle: CFB

▸ Oracle attacks using downgrades

▸ ◎ target ciphertext: AEAD or AES Key Wrap

▸ b ciphertext decrypted by the oracle: CFB (or CBC)

©MTG AG Falko Strenzke, Johannes Roth 9/47

Decryption oracle attacks against modern cipher modes

▸ Classical oracle attacks

▸ ◎ target ciphertext: CFB
▸ b ciphertext decrypted by the oracle: CFB

▸ Oracle attacks using downgrades

▸ ◎ target ciphertext: AEAD or AES Key Wrap

▸ b ciphertext decrypted by the oracle: CFB (or CBC)

©MTG AG Falko Strenzke, Johannes Roth 9/47

Decryption oracle attacks against modern cipher modes

▸ Classical oracle attacks

▸ ◎ target ciphertext: CFB
▸ b ciphertext decrypted by the oracle: CFB

▸ Oracle attacks using downgrades

▸ ◎ target ciphertext: AEAD or AES Key Wrap

▸ b ciphertext decrypted by the oracle: CFB (or CBC)

©MTG AG Falko Strenzke, Johannes Roth 9/47

Decryption oracle attacks against modern cipher modes

▸ Classical oracle attacks

▸ ◎ target ciphertext: CFB
▸ b ciphertext decrypted by the oracle: CFB

▸ Oracle attacks using downgrades

▸ ◎ target ciphertext: AEAD or AES Key Wrap

▸ b ciphertext decrypted by the oracle: CFB (or CBC)

©MTG AG Falko Strenzke, Johannes Roth 9/47

Signature 1 Literal Data

PKESK PKESK Tag 9: SED — CFB encrypted

Tag 20: OCB — OCB/EAX encr.

algorithm ID
unprotected
in CMS and
LibrePGP

Signature

signature does
not achieve
integrity

Public Key Encrypted
Session Key.
session key
encrypted to
public key
of user A

session key
encrypted to
public key
of user B

Enck()
symmetric
encryption

©MTG AG Falko Strenzke, Johannes Roth 10/47

Signature 1 Literal Data

PKESK PKESK Tag 9: SED — CFB encrypted

Tag 20: OCB — OCB/EAX encr.

algorithm ID
unprotected
in CMS and
LibrePGP

Signature

signature does
not achieve
integrity

Public Key Encrypted
Session Key.
session key
encrypted to
public key
of user A

session key
encrypted to
public key
of user B

Enck()
symmetric
encryption

©MTG AG Falko Strenzke, Johannes Roth 10/47

Signature 1 Literal Data

PKESK PKESK Tag 9: SED — CFB encrypted

Tag 20: OCB — OCB/EAX encr.

algorithm ID
unprotected
in CMS and
LibrePGP

Signature

signature does
not achieve
integrity

Public Key Encrypted
Session Key.
session key
encrypted to
public key
of user A

session key
encrypted to
public key
of user B

Enck()
symmetric
encryption

©MTG AG Falko Strenzke, Johannes Roth 10/47

Introduction

Decryption Oracle Attacks against Cryptographic Message Syntax

Plaintext manipulation attacks against LibrePGP AEAD

Plaintext recovery for low entropy blocks in LibrePGP OCB Packets

Legacy Mode Downgrade Attacks against AES Key Wrap

Conclusion

©MTG AG Falko Strenzke, Johannes Roth 11/47

Decryption Oracle Attacks against Cryptographic Message
Syntax (CMS)

▸ CMS realizes two AES-based AEAD modes

▸ AES-CCM
▸ AES-GCM

▸ both perform encryption using CTR-mode

▸ Legacy encryption mode in CMS: CBC

▸ previous work: Tibor Jager, Kenneth G. Paterson, and Juraj Somorovsky. One bad apple: Backwards

compatibility attacks on state-of-the-art cryptography. In 20th Annual Network and Distributed System

Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27, 2013, 2013.

https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/

one-bad-apple-backwards-compatibility-attacks-state-art-cryptography/.

©MTG AG Falko Strenzke, Johannes Roth 12/47

https://www.ndss-sym posium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards- compatibility-attacks-state-art-cryptography/
https://www.ndss-sym posium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards- compatibility-attacks-state-art-cryptography/

Decryption Oracle Attacks against Cryptographic Message
Syntax (CMS)

▸ CMS realizes two AES-based AEAD modes

▸ AES-CCM
▸ AES-GCM

▸ both perform encryption using CTR-mode

▸ Legacy encryption mode in CMS: CBC

▸ previous work: Tibor Jager, Kenneth G. Paterson, and Juraj Somorovsky. One bad apple: Backwards

compatibility attacks on state-of-the-art cryptography. In 20th Annual Network and Distributed System

Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27, 2013, 2013.

https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/

one-bad-apple-backwards-compatibility-attacks-state-art-cryptography/.

©MTG AG Falko Strenzke, Johannes Roth 12/47

https://www.ndss-sym posium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards- compatibility-attacks-state-art-cryptography/
https://www.ndss-sym posium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards- compatibility-attacks-state-art-cryptography/

Decryption Oracle Attacks against Cryptographic Message
Syntax (CMS)

▸ CMS realizes two AES-based AEAD modes

▸ AES-CCM
▸ AES-GCM

▸ both perform encryption using CTR-mode

▸ Legacy encryption mode in CMS: CBC

▸ previous work: Tibor Jager, Kenneth G. Paterson, and Juraj Somorovsky. One bad apple: Backwards

compatibility attacks on state-of-the-art cryptography. In 20th Annual Network and Distributed System

Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27, 2013, 2013.

https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/

one-bad-apple-backwards-compatibility-attacks-state-art-cryptography/.

©MTG AG Falko Strenzke, Johannes Roth 12/47

https://www.ndss-sym posium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards- compatibility-attacks-state-art-cryptography/
https://www.ndss-sym posium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards- compatibility-attacks-state-art-cryptography/

Decryption Oracle Attacks against Cryptographic Message
Syntax (CMS)

▸ CMS realizes two AES-based AEAD modes

▸ AES-CCM
▸ AES-GCM

▸ both perform encryption using CTR-mode

▸ Legacy encryption mode in CMS: CBC

▸ previous work: Tibor Jager, Kenneth G. Paterson, and Juraj Somorovsky. One bad apple: Backwards

compatibility attacks on state-of-the-art cryptography. In 20th Annual Network and Distributed System

Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27, 2013, 2013.

https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/

one-bad-apple-backwards-compatibility-attacks-state-art-cryptography/.

©MTG AG Falko Strenzke, Johannes Roth 12/47

https://www.ndss-sym posium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards- compatibility-attacks-state-art-cryptography/
https://www.ndss-sym posium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards- compatibility-attacks-state-art-cryptography/

Decryption Oracle Attacks against Cryptographic Message
Syntax (CMS)

▸ CMS realizes two AES-based AEAD modes

▸ AES-CCM
▸ AES-GCM

▸ both perform encryption using CTR-mode

▸ Legacy encryption mode in CMS: CBC

▸ previous work: Tibor Jager, Kenneth G. Paterson, and Juraj Somorovsky. One bad apple: Backwards

compatibility attacks on state-of-the-art cryptography. In 20th Annual Network and Distributed System

Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27, 2013, 2013.

https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/

one-bad-apple-backwards-compatibility-attacks-state-art-cryptography/.

©MTG AG Falko Strenzke, Johannes Roth 12/47

https://www.ndss-sym posium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards- compatibility-attacks-state-art-cryptography/
https://www.ndss-sym posium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards- compatibility-attacks-state-art-cryptography/

Decryption Oracle Attacks against Cryptographic Message
Syntax (CMS)

▸ CMS realizes two AES-based AEAD modes

▸ AES-CCM
▸ AES-GCM

▸ both perform encryption using CTR-mode

▸ Legacy encryption mode in CMS: CBC

▸ previous work: Tibor Jager, Kenneth G. Paterson, and Juraj Somorovsky. One bad apple: Backwards

compatibility attacks on state-of-the-art cryptography. In 20th Annual Network and Distributed System

Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27, 2013, 2013.

https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/

one-bad-apple-backwards-compatibility-attacks-state-art-cryptography/.

©MTG AG Falko Strenzke, Johannes Roth 12/47

https://www.ndss-sym posium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards- compatibility-attacks-state-art-cryptography/
https://www.ndss-sym posium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards- compatibility-attacks-state-art-cryptography/

Revealing low entropy blocks in plaintext

counter 0 counter 1 counter 2

counter 1 counter 2

EK() EK()

key stream 1 key stream 2

plaintext 1

å fully known

plaintext 2

guess few bytes
of plaintext

implies guess
for keystream bytes

DK()
via CBC-decr

guess ctr 1

verify the guess

== ?

verify many guesses in
single fully-revealing

CBC-oracle query

example: find out
4-digit pin

ciphertext 1 ciphertext 2

ciphertext 1 ciphertext 2

⊕ ⊕

+1 +1 +1

©MTG AG Falko Strenzke, Johannes Roth 13/47

Revealing low entropy blocks in plaintext

counter 0 counter 1 counter 2

counter 1 counter 2

EK() EK()

key stream 1 key stream 2

plaintext 1

å fully known

plaintext 2

guess few bytes
of plaintext

implies guess
for keystream bytes

DK()
via CBC-decr

guess ctr 1

verify the guess

== ?

verify many guesses in
single fully-revealing

CBC-oracle query

example: find out
4-digit pin

ciphertext 1 ciphertext 2

ciphertext 1 ciphertext 2

⊕ ⊕

+1 +1 +1

©MTG AG Falko Strenzke, Johannes Roth 13/47

Revealing low entropy blocks in plaintext

counter 0

counter 1 counter 2

counter 1 counter 2

EK() EK()

key stream 1 key stream 2

plaintext 1

å fully known

plaintext 2

guess few bytes
of plaintext

implies guess
for keystream bytes

DK()
via CBC-decr

guess ctr 1

verify the guess

== ?

verify many guesses in
single fully-revealing

CBC-oracle query

example: find out
4-digit pin

ciphertext 1 ciphertext 2

ciphertext 1 ciphertext 2

⊕ ⊕

+1 +1 +1

©MTG AG Falko Strenzke, Johannes Roth 13/47

Revealing low entropy blocks in plaintext

counter 0

counter 1 counter 2

counter 1 counter 2

EK() EK()

key stream 1 key stream 2

plaintext 1

å fully known

plaintext 2

guess few bytes
of plaintext

implies guess
for keystream bytes

DK()
via CBC-decr

guess ctr 1

verify the guess

== ?

verify many guesses in
single fully-revealing

CBC-oracle query

example: find out
4-digit pin

ciphertext 1 ciphertext 2

ciphertext 1 ciphertext 2

⊕ ⊕

+1 +1 +1

©MTG AG Falko Strenzke, Johannes Roth 13/47

Revealing low entropy blocks in plaintext

counter 0

counter 1 counter 2

counter 1 counter 2

EK() EK()

key stream 1 key stream 2

plaintext 1

å fully known

plaintext 2

guess few bytes
of plaintext

implies guess
for keystream bytes

DK()
via CBC-decr

guess ctr 1

verify the guess

== ?

verify many guesses in
single fully-revealing

CBC-oracle query

example: find out
4-digit pin

ciphertext 1 ciphertext 2

ciphertext 1 ciphertext 2

⊕ ⊕

+1 +1 +1

©MTG AG Falko Strenzke, Johannes Roth 13/47

Revealing low entropy blocks in plaintext

counter 0

counter 1 counter 2

counter 1 counter 2

EK() EK()

key stream 1 key stream 2

plaintext 1

å fully known

plaintext 2

guess few bytes
of plaintext

implies guess
for keystream bytes

DK()
via CBC-decr

guess ctr 1

verify the guess

== ?

verify many guesses in
single fully-revealing

CBC-oracle query

example: find out
4-digit pin

ciphertext 1 ciphertext 2

ciphertext 1 ciphertext 2

⊕ ⊕

+1 +1 +1

©MTG AG Falko Strenzke, Johannes Roth 13/47

Revealing low entropy blocks in plaintext

counter 0

counter 1 counter 2

counter 1 counter 2

EK() EK()

key stream 1 key stream 2

plaintext 1

å fully known

plaintext 2

guess few bytes
of plaintext

implies guess
for keystream bytes

DK()
via CBC-decr

guess ctr 1

verify the guess

== ?

verify many guesses in
single fully-revealing

CBC-oracle query

example: find out
4-digit pin

ciphertext 1 ciphertext 2

ciphertext 1 ciphertext 2

⊕ ⊕

+1 +1 +1

©MTG AG Falko Strenzke, Johannes Roth 13/47

Revealing low entropy blocks in plaintext

counter 0

counter 1 counter 2

counter 1 counter 2

EK() EK()

key stream 1 key stream 2

plaintext 1

å fully known

plaintext 2

guess few bytes
of plaintext

implies guess
for keystream bytes

DK()
via CBC-decr

guess ctr 1

verify the guess

== ?

verify many guesses in
single fully-revealing

CBC-oracle query

example: find out
4-digit pin

ciphertext 1 ciphertext 2

ciphertext 1 ciphertext 2

⊕ ⊕

+1 +1 +1

©MTG AG Falko Strenzke, Johannes Roth 13/47

Revealing low entropy blocks in plaintext

counter 0

counter 1 counter 2

counter 1 counter 2

EK() EK()

key stream 1 key stream 2

plaintext 1

å fully known

plaintext 2

guess few bytes
of plaintext

implies guess
for keystream bytes

DK()
via CBC-decr

guess ctr 1

verify the guess

== ?

verify many guesses in
single fully-revealing

CBC-oracle query

example: find out
4-digit pin

ciphertext 1 ciphertext 2

ciphertext 1 ciphertext 2

⊕ ⊕

+1 +1 +1

©MTG AG Falko Strenzke, Johannes Roth 13/47

CBC padding oracle

▸ CBC operates only on full plaintext blocks

▸ padding needed

▸ padding in CMS:

▸ 13 bytes of content ∣∣ 0x3 ∣∣ 0x3 ∣∣ 0x3

▸ padding oracle:

▸ if decrypting party reveals whether padding was incorrect

▸ padding oracle attack

▸ placing the target ciphertext block as final block
▸ “playing” with the final bytes
▸ padding error reveals information about value of final bytes

©MTG AG Falko Strenzke, Johannes Roth 14/47

CBC padding oracle

▸ CBC operates only on full plaintext blocks

▸ padding needed

▸ padding in CMS:

▸ 13 bytes of content ∣∣ 0x3 ∣∣ 0x3 ∣∣ 0x3

▸ padding oracle:

▸ if decrypting party reveals whether padding was incorrect

▸ padding oracle attack

▸ placing the target ciphertext block as final block
▸ “playing” with the final bytes
▸ padding error reveals information about value of final bytes

©MTG AG Falko Strenzke, Johannes Roth 14/47

CBC padding oracle

▸ CBC operates only on full plaintext blocks

▸ padding needed

▸ padding in CMS:

▸ 13 bytes of content ∣∣ 0x3 ∣∣ 0x3 ∣∣ 0x3

▸ padding oracle:

▸ if decrypting party reveals whether padding was incorrect

▸ padding oracle attack

▸ placing the target ciphertext block as final block
▸ “playing” with the final bytes
▸ padding error reveals information about value of final bytes

©MTG AG Falko Strenzke, Johannes Roth 14/47

CBC padding oracle

▸ CBC operates only on full plaintext blocks

▸ padding needed

▸ padding in CMS:

▸ 13 bytes of content ∣∣ 0x3 ∣∣ 0x3 ∣∣ 0x3

▸ padding oracle:

▸ if decrypting party reveals whether padding was incorrect

▸ padding oracle attack

▸ placing the target ciphertext block as final block
▸ “playing” with the final bytes
▸ padding error reveals information about value of final bytes

©MTG AG Falko Strenzke, Johannes Roth 14/47

CBC padding oracle

▸ CBC operates only on full plaintext blocks

▸ padding needed

▸ padding in CMS:

▸ 13 bytes of content ∣∣ 0x3 ∣∣ 0x3 ∣∣ 0x3

▸ padding oracle:

▸ if decrypting party reveals whether padding was incorrect

▸ padding oracle attack

▸ placing the target ciphertext block as final block
▸ “playing” with the final bytes
▸ padding error reveals information about value of final bytes

©MTG AG Falko Strenzke, Johannes Roth 14/47

CBC padding oracle

▸ CBC operates only on full plaintext blocks

▸ padding needed

▸ padding in CMS:

▸ 13 bytes of content ∣∣ 0x3 ∣∣ 0x3 ∣∣ 0x3

▸ padding oracle:

▸ if decrypting party reveals whether padding was incorrect

▸ padding oracle attack

▸ placing the target ciphertext block as final block
▸ “playing” with the final bytes
▸ padding error reveals information about value of final bytes

©MTG AG Falko Strenzke, Johannes Roth 14/47

CBC padding oracle

▸ CBC operates only on full plaintext blocks

▸ padding needed

▸ padding in CMS:

▸ 13 bytes of content ∣∣ 0x3 ∣∣ 0x3 ∣∣ 0x3

▸ padding oracle:

▸ if decrypting party reveals whether padding was incorrect

▸ padding oracle attack

▸ placing the target ciphertext block as final block
▸ “playing” with the final bytes
▸ padding error reveals information about value of final bytes

©MTG AG Falko Strenzke, Johannes Roth 14/47

CBC padding oracle

▸ CBC operates only on full plaintext blocks

▸ padding needed

▸ padding in CMS:

▸ 13 bytes of content ∣∣ 0x3 ∣∣ 0x3 ∣∣ 0x3

▸ padding oracle:

▸ if decrypting party reveals whether padding was incorrect

▸ padding oracle attack

▸ placing the target ciphertext block as final block
▸ “playing” with the final bytes
▸ padding error reveals information about value of final bytes

©MTG AG Falko Strenzke, Johannes Roth 14/47

CBC padding oracle

▸ CBC operates only on full plaintext blocks

▸ padding needed

▸ padding in CMS:

▸ 13 bytes of content ∣∣ 0x3 ∣∣ 0x3 ∣∣ 0x3

▸ padding oracle:

▸ if decrypting party reveals whether padding was incorrect

▸ padding oracle attack

▸ placing the target ciphertext block as final block
▸ “playing” with the final bytes
▸ padding error reveals information about value of final bytes

©MTG AG Falko Strenzke, Johannes Roth 14/47

CBC padding oracle

▸ CBC operates only on full plaintext blocks

▸ padding needed

▸ padding in CMS:

▸ 13 bytes of content ∣∣ 0x3 ∣∣ 0x3 ∣∣ 0x3

▸ padding oracle:

▸ if decrypting party reveals whether padding was incorrect

▸ padding oracle attack

▸ placing the target ciphertext block as final block
▸ “playing” with the final bytes
▸ padding error reveals information about value of final bytes

©MTG AG Falko Strenzke, Johannes Roth 14/47

Countermeasure for CMS

▸ draft-ietf-lamps-cms-cek-hkdf-sha256

▸ defines new algorithm identifier for symmetric which indicates use of prior key
HKDF derivation

▸ cea -CEKHKDFSHA256 CONTENT -ENCRYPTION ::= {

IDENTIFIER id -alg -cek -hkdf -sha256

PARAMS TYPE ContentEncryptionAlgorithmIdentifier ARE required

SMIME -CAPS { IDENTIFIED BY id -alg -cek -hkdf -sha256 } }

▸ PRK = HKDF-Extract(salt, IKM)
▸ DEK = HKDF-Expand(PRK, AlgorithmID, OKM SIZE)

▸ Cross-algorithm attack: derived key is different

©MTG AG Falko Strenzke, Johannes Roth 15/47

https://datatracker.ietf.org/doc/html/draft-ietf-lamps-cms-cek-hkdf-sha256

Introduction

Decryption Oracle Attacks against Cryptographic Message Syntax

Plaintext manipulation attacks against LibrePGP AEAD

Plaintext recovery for low entropy blocks in LibrePGP OCB Packets

Legacy Mode Downgrade Attacks against AES Key Wrap

Conclusion

©MTG AG Falko Strenzke, Johannes Roth 16/47

Cross-Algorithm Attacks against LibrePGP AEAD

RFC 2440 1998

RFC 4880 2007

4880bis 2015

RFC 9580 2024

LibrePGP 2023

v3 and v4 keys

v3 and v4 keys

adds v5 keys

adds v6 keys

▸ LibrePGP AEAD:

▸ GnuPG
▸ RNP

©MTG AG Falko Strenzke, Johannes Roth 17/47

Cross-Algorithm Attacks against LibrePGP AEAD

RFC 2440 1998

RFC 4880 2007

4880bis 2015

RFC 9580 2024

LibrePGP 2023

v3 and v4 keys

v3 and v4 keys

adds v5 keys

adds v6 keys

▸ LibrePGP AEAD:

▸ GnuPG
▸ RNP

©MTG AG Falko Strenzke, Johannes Roth 17/47

Cross-Algorithm Attacks against LibrePGP AEAD

RFC 2440 1998

RFC 4880 2007

4880bis 2015

RFC 9580 2024

LibrePGP 2023

v3 and v4 keys

v3 and v4 keys

adds v5 keys

adds v6 keys

▸ LibrePGP AEAD:

▸ GnuPG
▸ RNP

©MTG AG Falko Strenzke, Johannes Roth 17/47

Key Derivation for AEAD in RFC 9580

¤ Public-Key
Public-key
Encryption()

session-key

µ PKESK (encrypted
session-key)

HKDF()

salt alg. ID

DEK AES-OCB-Encr()
µ encrypted
message

message

LibrePGP

as
plain-
text

▸ LibrePGP: session-key = DEK

©MTG AG Falko Strenzke, Johannes Roth 18/47

Key Derivation for AEAD in RFC 9580

¤ Public-Key
Public-key
Encryption()

session-key

µ PKESK (encrypted
session-key)

HKDF()

salt alg. ID

DEK AES-OCB-Encr()
µ encrypted
message

message

LibrePGP

as
plain-
text

▸ LibrePGP: session-key = DEK

©MTG AG Falko Strenzke, Johannes Roth 18/47

Key Derivation for AEAD in RFC 9580

¤ Public-Key
Public-key
Encryption()

session-key

µ PKESK (encrypted
session-key)

HKDF()

salt alg. ID

DEK

AES-OCB-Encr()
µ encrypted
message

message

LibrePGPas
plain-
text

▸ LibrePGP: session-key = DEK

©MTG AG Falko Strenzke, Johannes Roth 18/47

CFB decryption oracle as an ECB encryption oracle

IV

AES-encryptk()

⊕

ciphertext 1

plaintext 1

AES-encryptk()

⊕

ciphertext 2

plaintext 2

⊕

ECB-encryptk(ct1)

AES-encryptk()

⊕

ciphertext 3

plaintext 3

⊕

ECB-encryptk(ct2)

©MTG AG Falko Strenzke, Johannes Roth 19/47

CFB decryption oracle as an ECB encryption oracle

IV

AES-encryptk()

⊕

ciphertext 1

plaintext 1

AES-encryptk()

⊕

ciphertext 2

plaintext 2

⊕

ECB-encryptk(ct1)

AES-encryptk()

⊕

ciphertext 3

plaintext 3

⊕

ECB-encryptk(ct2)

©MTG AG Falko Strenzke, Johannes Roth 19/47

CFB decryption oracle as an ECB encryption oracle

IV

AES-encryptk()

⊕

ciphertext 1

plaintext 1

AES-encryptk()

⊕

ciphertext 2

plaintext 2

⊕

ECB-encryptk(ct1)

AES-encryptk()

⊕

ciphertext 3

plaintext 3

⊕

ECB-encryptk(ct2)

©MTG AG Falko Strenzke, Johannes Roth 19/47

What we can do with an OpenPGP SED decryption Oracle

▸ An SED decryption oracle can be used to decrypt SED packages (legacy attack)

▸ An SED decryption oracle provides an ECB encryption oracle
▸ can we use an ECB encryption oracle to attack AEAD mode?

▸ OpenPGP AEAD acc. to RFC 9580: ruled out by key derivation
▸ but no key derivation in LibrePGP

©MTG AG Falko Strenzke, Johannes Roth 20/47

What we can do with an OpenPGP SED decryption Oracle

▸ An SED decryption oracle can be used to decrypt SED packages (legacy attack)

▸ An SED decryption oracle provides an ECB encryption oracle
▸ can we use an ECB encryption oracle to attack AEAD mode?

▸ OpenPGP AEAD acc. to RFC 9580: ruled out by key derivation
▸ but no key derivation in LibrePGP

©MTG AG Falko Strenzke, Johannes Roth 20/47

What we can do with an OpenPGP SED decryption Oracle

▸ An SED decryption oracle can be used to decrypt SED packages (legacy attack)

▸ An SED decryption oracle provides an ECB encryption oracle
▸ can we use an ECB encryption oracle to attack AEAD mode?

▸ OpenPGP AEAD acc. to RFC 9580: ruled out by key derivation
▸ but no key derivation in LibrePGP

©MTG AG Falko Strenzke, Johannes Roth 20/47

What we can do with an OpenPGP SED decryption Oracle

▸ An SED decryption oracle can be used to decrypt SED packages (legacy attack)

▸ An SED decryption oracle provides an ECB encryption oracle
▸ can we use an ECB encryption oracle to attack AEAD mode?

▸ OpenPGP AEAD acc. to RFC 9580: ruled out by key derivation
▸ but no key derivation in LibrePGP

©MTG AG Falko Strenzke, Johannes Roth 20/47

What we can do with an OpenPGP SED decryption Oracle

▸ An SED decryption oracle can be used to decrypt SED packages (legacy attack)

▸ An SED decryption oracle provides an ECB encryption oracle
▸ can we use an ECB encryption oracle to attack AEAD mode?

▸ OpenPGP AEAD acc. to RFC 9580: ruled out by key derivation
▸ but no key derivation in LibrePGP

©MTG AG Falko Strenzke, Johannes Roth 20/47

LibrePGP AEAD Encryption

▸ “OCB Packet”
▸ supported modes

▸ OCB
▸ EAX (deprecated)

▸ “chunked AEAD”

©MTG AG Falko Strenzke, Johannes Roth 21/47

LibrePGP AEAD Encryption

▸ “OCB Packet”
▸ supported modes

▸ OCB
▸ EAX (deprecated)

▸ “chunked AEAD”

©MTG AG Falko Strenzke, Johannes Roth 21/47

LibrePGP AEAD Encryption

▸ “OCB Packet”
▸ supported modes

▸ OCB
▸ EAX (deprecated)

▸ “chunked AEAD”

©MTG AG Falko Strenzke, Johannes Roth 21/47

LibrePGP AEAD Encryption

▸ “OCB Packet”
▸ supported modes

▸ OCB
▸ EAX (deprecated)

▸ “chunked AEAD”

©MTG AG Falko Strenzke, Johannes Roth 21/47

LibrePGP AEAD Encryption

▸ “OCB Packet”
▸ supported modes

▸ OCB
▸ EAX (deprecated)

▸ “chunked AEAD”

©MTG AG Falko Strenzke, Johannes Roth 21/47

LibrePGP chunked AEAD

ciphertext chunk 1 auth-tag1 ciphertext chunk 2 auth-tag2 final auth-tag

OCB-encryptk() OCB-encryptk() OCB-encryptk()

idx = 1

additional data

idx = 2

additional data

idx = 3

additional data

plaintext chunk 1 plaintext chunk 2 Ø

©MTG AG Falko Strenzke, Johannes Roth 22/47

OCB Encryption

▸ OCB encryption uses only block cipher (e.g. AES) block-encryption

▸ CFB decryption uses only block-encryption

▸ Thus: use CFB-decryption as an oracle!

▸ � Insert data into an existing LibrePGP OCB Packet

OCB Encryption CFB decryption Oracle

plaintext

chooses

runs

OCB ciphertext

query when needing AES-EncryptK()
1. oracle-question
≈ 100 queries

2. oracle-question
1 query

©MTG AG Falko Strenzke, Johannes Roth 23/47

OCB Encryption

▸ OCB encryption uses only block cipher (e.g. AES) block-encryption

▸ CFB decryption uses only block-encryption

▸ Thus: use CFB-decryption as an oracle!

▸ � Insert data into an existing LibrePGP OCB Packet

OCB Encryption CFB decryption Oracle

plaintext

chooses

runs

OCB ciphertext

query when needing AES-EncryptK()
1. oracle-question
≈ 100 queries

2. oracle-question
1 query

©MTG AG Falko Strenzke, Johannes Roth 23/47

OCB Encryption

▸ OCB encryption uses only block cipher (e.g. AES) block-encryption

▸ CFB decryption uses only block-encryption

▸ Thus: use CFB-decryption as an oracle!

▸ � Insert data into an existing LibrePGP OCB Packet

OCB Encryption CFB decryption Oracle

plaintext

chooses

runs

OCB ciphertext

query when needing AES-EncryptK()
1. oracle-question
≈ 100 queries

2. oracle-question
1 query

©MTG AG Falko Strenzke, Johannes Roth 23/47

OCB Encryption

▸ OCB encryption uses only block cipher (e.g. AES) block-encryption

▸ CFB decryption uses only block-encryption

▸ Thus: use CFB-decryption as an oracle!

▸ � Insert data into an existing LibrePGP OCB Packet

OCB Encryption CFB decryption Oracle

plaintext

chooses

runs

OCB ciphertext

query when needing AES-EncryptK()
1. oracle-question
≈ 100 queries

2. oracle-question
1 query

©MTG AG Falko Strenzke, Johannes Roth 23/47

OCB Encryption

▸ OCB encryption uses only block cipher (e.g. AES) block-encryption

▸ CFB decryption uses only block-encryption

▸ Thus: use CFB-decryption as an oracle!

▸ � Insert data into an existing LibrePGP OCB Packet

OCB Encryption CFB decryption Oracle

plaintext

chooses

runs

OCB ciphertext

query when needing AES-EncryptK()
1. oracle-question
≈ 100 queries

2. oracle-question
1 query

©MTG AG Falko Strenzke, Johannes Roth 23/47

1: procedure OCB-ENCRYPT(k ∈ {0,1}keylen,N ∈ {0,1}120,A ∈ {0,1}∗,P ∈ {0,1}∗)
2: m̃ = ⌊∣P ∣/128⌋
3: parse P as P1 ∥P2 ∥ . . . ∥Pm̃ ∥P∗ where ∣Pi ∣ = 128 for each 1 ≤ i ≤ m̃ and 0 ≤ ∣P∗∣ < 128
4: compute values L∗, L$, and Li for 0 ≤ i (dbl. in GF(2128) using Ek([0]

128))
5: . . .
6: f = Ek(N[1 ∶ 122] ∥ [0]6) // “Ktop”
7: . . .
8: G0 = . . . // inital mask
9: s0 = [0]128 // “Checksum”

10: for 1 ≤ i ≤ m̃ do
11: Gi = Gi−1 ⊕ Lntz(i)
12: Ci = Gi ⊕ Ek(Pi ⊕Gi)

13: si = si−1 ⊕ Pi

14: end for
15: if ∣P∗∣ > 0 then
16: ñ ← m̃ + 1
17: . . .
18: u = Ek(Gñ) // “Pad”
19: . . .
20: else
21: ñ ← m̃
22: end if
23: T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A)

24: return C = C1 ∥C2 ∥ ... ∥Cñ ∥T [1 ∶ taglen]
25: end procedure

Setup L... and
G0 values

Encryption loop
with input and
output whitening

Special case of
non-full final
plaintext block

Compute the auth. tag

1st question
to ECB
oracle

2nd question
to ECB
oracle

2nd encr.
call only

1: procedure OCB-ENCRYPT(k ∈ {0,1}keylen,N ∈ {0,1}120,A ∈ {0,1}∗,P ∈ {0,1}∗)
2: m̃ = ⌊∣P ∣/128⌋
3: parse P as P1 ∥P2 ∥ . . . ∥Pm̃ ∥P∗ where ∣Pi ∣ = 128 for each 1 ≤ i ≤ m̃ and 0 ≤ ∣P∗∣ < 128
4: compute values L∗, L$, and Li for 0 ≤ i (dbl. in GF(2128) using Ek([0]

128))
5: . . .
6: f = Ek(N[1 ∶ 122] ∥ [0]6) // “Ktop”
7: . . .
8: G0 = . . . // inital mask
9: s0 = [0]128 // “Checksum”

10: for 1 ≤ i ≤ m̃ do
11: Gi = Gi−1 ⊕ Lntz(i)
12: Ci = Gi ⊕ Ek(Pi ⊕Gi)

13: si = si−1 ⊕ Pi

14: end for
15: if ∣P∗∣ > 0 then
16: ñ ← m̃ + 1
17: . . .
18: u = Ek(Gñ) // “Pad”
19: . . .
20: else
21: ñ ← m̃
22: end if
23: T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A)

24: return C = C1 ∥C2 ∥ ... ∥Cñ ∥T [1 ∶ taglen]
25: end procedure

Setup L... and
G0 values

Encryption loop
with input and
output whitening

Special case of
non-full final
plaintext block

Compute the auth. tag

1st question
to ECB
oracle

2nd question
to ECB
oracle

2nd encr.
call only

1: procedure OCB-ENCRYPT(k ∈ {0,1}keylen,N ∈ {0,1}120,A ∈ {0,1}∗,P ∈ {0,1}∗)
2: m̃ = ⌊∣P ∣/128⌋
3: parse P as P1 ∥P2 ∥ . . . ∥Pm̃ ∥P∗ where ∣Pi ∣ = 128 for each 1 ≤ i ≤ m̃ and 0 ≤ ∣P∗∣ < 128
4: compute values L∗, L$, and Li for 0 ≤ i (dbl. in GF(2128) using Ek([0]

128))
5: . . .
6: f = Ek(N[1 ∶ 122] ∥ [0]6) // “Ktop”
7: . . .
8: G0 = . . . // inital mask
9: s0 = [0]128 // “Checksum”

10: for 1 ≤ i ≤ m̃ do
11: Gi = Gi−1 ⊕ Lntz(i)
12: Ci = Gi ⊕ Ek(Pi ⊕Gi)

13: si = si−1 ⊕ Pi

14: end for
15: if ∣P∗∣ > 0 then
16: ñ ← m̃ + 1
17: . . .
18: u = Ek(Gñ) // “Pad”
19: . . .
20: else
21: ñ ← m̃
22: end if
23: T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A)

24: return C = C1 ∥C2 ∥ ... ∥Cñ ∥T [1 ∶ taglen]
25: end procedure

Setup L... and
G0 values

Encryption loop
with input and
output whitening

Special case of
non-full final
plaintext block

Compute the auth. tag

1st question
to ECB
oracle

2nd question
to ECB
oracle

2nd encr.
call only

OCB Hash
1: procedure OCB-Hash(key k ∈ {0,1}∣K∣, additional data A ∈ {0,1}∗)
2: L∗ = Ek([0]

128)

3: L$ = ocbDouble(L∗)
4: L0 = ocbDouble(L$)
5: Li = ocbDouble(Li−1) for any integer i > 0
6: m = ⌊∣A∣/128⌋
7: parse A as A1 ∥A2 ∥ . . . ∥Am ∥A∗ where ∣Ai ∣ = 128 for each 1 ≤ i ≤ m and 0 ≤ ∣A∗∣ < 128
8: F0 = [0]128 // Offset
9: for i ← 1 to m do

10: Fi = Fi−1 ⊕ Lntz(i)
11: end for
12: if ∣A∗∣ > 0 then
13: n ← m + 1
14: Fn = Fm ⊕ L∗
15: An = (A∗ ∥1 ∥ [0]127−∣A∗ ∣)
16: else
17: n ← m
18: end if
19: S0 = [0]128 // Sum
20: for i ← 1 to n do
21: Si = Si−1 ⊕ Ek(Ai ⊕ Fi)

22: end for
23: return S = Sn
24: end procedure

Summary: LibrePGP OCB ciphertext manipulation

▸ For now, consider only the cryptographic layer

▸ Legacy SED Packets

▸ implement CFB encryption
▸ assuming a CFB decryption oracle
▸ realizes an ECB encryption oracle

▸ LibrePGP OCB Packets

▸ uses chunked AEAD R R R O

▸ OCB encryption

▸ uses only block cipher encryption
▸ →

OCB encryption under unknown key is possible with access to ECB encryption oracle

▸ Attack

▸ exchange or append chunk to existing ciphertext with unknown plaintext

©MTG AG Falko Strenzke, Johannes Roth 26/47

Summary: LibrePGP OCB ciphertext manipulation

▸ For now, consider only the cryptographic layer

▸ Legacy SED Packets

▸ implement CFB encryption
▸ assuming a CFB decryption oracle
▸ realizes an ECB encryption oracle

▸ LibrePGP OCB Packets

▸ uses chunked AEAD R R R O

▸ OCB encryption

▸ uses only block cipher encryption
▸ →

OCB encryption under unknown key is possible with access to ECB encryption oracle

▸ Attack

▸ exchange or append chunk to existing ciphertext with unknown plaintext

©MTG AG Falko Strenzke, Johannes Roth 26/47

Summary: LibrePGP OCB ciphertext manipulation

▸ For now, consider only the cryptographic layer

▸ Legacy SED Packets

▸ implement CFB encryption
▸ assuming a CFB decryption oracle
▸ realizes an ECB encryption oracle

▸ LibrePGP OCB Packets

▸ uses chunked AEAD R R R O

▸ OCB encryption

▸ uses only block cipher encryption
▸ →

OCB encryption under unknown key is possible with access to ECB encryption oracle

▸ Attack

▸ exchange or append chunk to existing ciphertext with unknown plaintext

©MTG AG Falko Strenzke, Johannes Roth 26/47

Summary: LibrePGP OCB ciphertext manipulation

▸ For now, consider only the cryptographic layer

▸ Legacy SED Packets

▸ implement CFB encryption
▸ assuming a CFB decryption oracle
▸ realizes an ECB encryption oracle

▸ LibrePGP OCB Packets

▸ uses chunked AEAD R R R O

▸ OCB encryption

▸ uses only block cipher encryption
▸ →

OCB encryption under unknown key is possible with access to ECB encryption oracle

▸ Attack

▸ exchange or append chunk to existing ciphertext with unknown plaintext

©MTG AG Falko Strenzke, Johannes Roth 26/47

Summary: LibrePGP OCB ciphertext manipulation

▸ For now, consider only the cryptographic layer

▸ Legacy SED Packets

▸ implement CFB encryption
▸ assuming a CFB decryption oracle
▸ realizes an ECB encryption oracle

▸ LibrePGP OCB Packets

▸ uses chunked AEAD R R R O

▸ OCB encryption

▸ uses only block cipher encryption
▸ →

OCB encryption under unknown key is possible with access to ECB encryption oracle

▸ Attack

▸ exchange or append chunk to existing ciphertext with unknown plaintext

©MTG AG Falko Strenzke, Johannes Roth 26/47

Summary: LibrePGP OCB ciphertext manipulation

▸ For now, consider only the cryptographic layer

▸ Legacy SED Packets

▸ implement CFB encryption
▸ assuming a CFB decryption oracle
▸ realizes an ECB encryption oracle

▸ LibrePGP OCB Packets

▸ uses chunked AEAD R R R O

▸ OCB encryption

▸ uses only block cipher encryption
▸ →

OCB encryption under unknown key is possible with access to ECB encryption oracle

▸ Attack

▸ exchange or append chunk to existing ciphertext with unknown plaintext

©MTG AG Falko Strenzke, Johannes Roth 26/47

Summary: LibrePGP OCB ciphertext manipulation

▸ For now, consider only the cryptographic layer

▸ Legacy SED Packets

▸ implement CFB encryption
▸ assuming a CFB decryption oracle
▸ realizes an ECB encryption oracle

▸ LibrePGP OCB Packets

▸ uses chunked AEAD R R R O

▸ OCB encryption

▸ uses only block cipher encryption
▸ →

OCB encryption under unknown key is possible with access to ECB encryption oracle

▸ Attack

▸ exchange or append chunk to existing ciphertext with unknown plaintext

©MTG AG Falko Strenzke, Johannes Roth 26/47

Summary: LibrePGP OCB ciphertext manipulation

▸ For now, consider only the cryptographic layer

▸ Legacy SED Packets

▸ implement CFB encryption
▸ assuming a CFB decryption oracle
▸ realizes an ECB encryption oracle

▸ LibrePGP OCB Packets

▸ uses chunked AEAD R R R O

▸ OCB encryption

▸ uses only block cipher encryption
▸ →

OCB encryption under unknown key is possible with access to ECB encryption oracle

▸ Attack

▸ exchange or append chunk to existing ciphertext with unknown plaintext

©MTG AG Falko Strenzke, Johannes Roth 26/47

Summary: LibrePGP OCB ciphertext manipulation

▸ For now, consider only the cryptographic layer

▸ Legacy SED Packets

▸ implement CFB encryption
▸ assuming a CFB decryption oracle
▸ realizes an ECB encryption oracle

▸ LibrePGP OCB Packets

▸ uses chunked AEAD R R R O

▸ OCB encryption

▸ uses only block cipher encryption
▸ →

OCB encryption under unknown key is possible with access to ECB encryption oracle

▸ Attack

▸ exchange or append chunk to existing ciphertext with unknown plaintext

©MTG AG Falko Strenzke, Johannes Roth 26/47

Summary: LibrePGP OCB ciphertext manipulation

▸ For now, consider only the cryptographic layer

▸ Legacy SED Packets

▸ implement CFB encryption
▸ assuming a CFB decryption oracle
▸ realizes an ECB encryption oracle

▸ LibrePGP OCB Packets

▸ uses chunked AEAD R R R O

▸ OCB encryption

▸ uses only block cipher encryption
▸ →

OCB encryption under unknown key is possible with access to ECB encryption oracle

▸ Attack

▸ exchange or append chunk to existing ciphertext with unknown plaintext

©MTG AG Falko Strenzke, Johannes Roth 26/47

Summary: LibrePGP OCB ciphertext manipulation

▸ For now, consider only the cryptographic layer

▸ Legacy SED Packets

▸ implement CFB encryption
▸ assuming a CFB decryption oracle
▸ realizes an ECB encryption oracle

▸ LibrePGP OCB Packets

▸ uses chunked AEAD R R R O

▸ OCB encryption

▸ uses only block cipher encryption
▸ →

OCB encryption under unknown key is possible with access to ECB encryption oracle

▸ Attack

▸ exchange or append chunk to existing ciphertext with unknown plaintext

©MTG AG Falko Strenzke, Johannes Roth 26/47

Summary: LibrePGP OCB ciphertext manipulation

▸ For now, consider only the cryptographic layer

▸ Legacy SED Packets

▸ implement CFB encryption
▸ assuming a CFB decryption oracle
▸ realizes an ECB encryption oracle

▸ LibrePGP OCB Packets

▸ uses chunked AEAD R R R O

▸ OCB encryption

▸ uses only block cipher encryption
▸ →

OCB encryption under unknown key is possible with access to ECB encryption oracle

▸ Attack

▸ exchange or append chunk to existing ciphertext with unknown plaintext

©MTG AG Falko Strenzke, Johannes Roth 26/47

Insertion of LibrePGP AEAD chunk

ciphertext chunk 1 auth-tag1 ciphertext chunk 2 auth-tag2 final auth-tag

OCB-encryptk()
OCB-encryptk()

via ECB-encr. oracle

chooses

runs

OCB-encryptk()

idx = 1

additional data

idx = 2

additional data

idx = 3

additional data

plaintext chunk 1 plaintext chunk 2’ Ø

©MTG AG Falko Strenzke, Johannes Roth 27/47

It’s not that simple: expected plaintext structure in
SED (CFB) oracle

▸ So far: cryptographic attack

▸ Not accounting for

▸ availability of SED decryption
▸ OpenPGP plaintext format

©MTG AG Falko Strenzke, Johannes Roth 28/47

It’s not that simple: expected plaintext structure in
SED (CFB) oracle

▸ So far: cryptographic attack

▸ Not accounting for

▸ availability of SED decryption
▸ OpenPGP plaintext format

©MTG AG Falko Strenzke, Johannes Roth 28/47

It’s not that simple: expected plaintext structure in
SED (CFB) oracle

▸ So far: cryptographic attack

▸ Not accounting for

▸ availability of SED decryption
▸ OpenPGP plaintext format

©MTG AG Falko Strenzke, Johannes Roth 28/47

It’s not that simple: expected plaintext structure in
SED (CFB) oracle

▸ So far: cryptographic attack

▸ Not accounting for

▸ availability of SED decryption
▸ OpenPGP plaintext format

©MTG AG Falko Strenzke, Johannes Roth 28/47

Availability and exploitability of SED decryption

▸ GnuPG (CLI) in default configuration

▸ outputs the SED plaintext
▸ non-zero exit code and warning (stderror)

gpg: WARNING: message was not integrity protected

gpg: decryption forced to fail!

▸▸ RNP

▸ supports SED unrestricted
▸ implements quick-check

▸ omitted detail: OpenPGP SED CFB encryption uses two-step CFB encryption
▸ Quick-check (redundancy test): requires the equality of two 2-byte pairs at the start

of the plaintext
▸ random ciphertext fails this check with 2−16

▸ Quick check is vulnerability in itself!

©MTG AG Falko Strenzke, Johannes Roth 29/47

Two-step CFB encryption in SED Packet

1: procedure SED-DecK (H ∥B1 ∥ . . . ∥Bm) with H ∈ {0,1}144 and Bi ∈ {0,1}128

2: Y ← CFB-decryptK([0]128,H) // Y ∈ {0,1}128+16

3: if have quick-check AND Y [96 ∶ 127] ≠ Y [128 ∶ 143] then
4: Abort with error
5: end if
6: IV ← H[16 ∶ 143]
7: return CFB-decryptK(IV,B1 ∥ . . . ∥Bm)
8: end procedure

©MTG AG Falko Strenzke, Johannes Roth 30/47

OpenPGP plaintext format

▸ decrypted plaintext must be either

▸ Literal Data (LIT) Packet
▸ (Compressed Data)
▸ (Signed Data)
▸ (Encrypted Data)

©MTG AG Falko Strenzke, Johannes Roth 31/47

OpenPGP plaintext format

▸ decrypted plaintext must be either

▸ Literal Data (LIT) Packet
▸ (Compressed Data)
▸ (Signed Data)
▸ (Encrypted Data)

©MTG AG Falko Strenzke, Johannes Roth 31/47

OpenPGP plaintext format

▸ decrypted plaintext must be either

▸ Literal Data (LIT) Packet
▸ (Compressed Data)
▸ (Signed Data)
▸ (Encrypted Data)

©MTG AG Falko Strenzke, Johannes Roth 31/47

OpenPGP plaintext format

▸ decrypted plaintext must be either

▸ Literal Data (LIT) Packet
▸ (Compressed Data)
▸ (Signed Data)
▸ (Encrypted Data)

©MTG AG Falko Strenzke, Johannes Roth 31/47

OpenPGP plaintext format

▸ decrypted plaintext must be either

▸ Literal Data (LIT) Packet
▸ (Compressed Data)
▸ (Signed Data)
▸ (Encrypted Data)

©MTG AG Falko Strenzke, Johannes Roth 31/47

Random appearance of LIT Packet in SED (CFB) oracle

▸ Attacker’s ciphertext will decrypt to plaintexts with random appearance

▸ Plaintext must by chance be decodable as LIT Packet

T ∣∣L1[∣∣L2∣∣L3∣∣L4] format f.name len filename date message

2 - 5 bytes
Li : packet length

1 byte,
4 valid
values

1 byte,
arbitrary

≤ 255 bytes,
should be
UTF-8

4 bytes,
arbitrary

this is returned as
OpenPGP plaintext

▸ Problems:

▸ Need to vary the leading part until a plaintext is returned
▸ How to know the offset of returned plaintext into “message”?

©MTG AG Falko Strenzke, Johannes Roth 32/47

Random appearance of LIT Packet in SED (CFB) oracle

▸ Attacker’s ciphertext will decrypt to plaintexts with random appearance

▸ Plaintext must by chance be decodable as LIT Packet

T ∣∣L1[∣∣L2∣∣L3∣∣L4] format f.name len filename date message

2 - 5 bytes
Li : packet length

1 byte,
4 valid
values

1 byte,
arbitrary

≤ 255 bytes,
should be
UTF-8

4 bytes,
arbitrary

this is returned as
OpenPGP plaintext

▸ Problems:

▸ Need to vary the leading part until a plaintext is returned
▸ How to know the offset of returned plaintext into “message”?

©MTG AG Falko Strenzke, Johannes Roth 32/47

Random appearance of LIT Packet in SED (CFB) oracle

▸ Attacker’s ciphertext will decrypt to plaintexts with random appearance

▸ Plaintext must by chance be decodable as LIT Packet

T ∣∣L1[∣∣L2∣∣L3∣∣L4] format f.name len filename date message

2 - 5 bytes
Li : packet length

1 byte,
4 valid
values

1 byte,
arbitrary

≤ 255 bytes,
should be
UTF-8

4 bytes,
arbitrary

this is returned as
OpenPGP plaintext

▸ Problems:

▸ Need to vary the leading part until a plaintext is returned
▸ How to know the offset of returned plaintext into “message”?

©MTG AG Falko Strenzke, Johannes Roth 32/47

Random appearance of LIT Packet in SED (CFB) oracle

▸ Attacker’s ciphertext will decrypt to plaintexts with random appearance

▸ Plaintext must by chance be decodable as LIT Packet

T ∣∣L1[∣∣L2∣∣L3∣∣L4] format f.name len filename date message

2 - 5 bytes
Li : packet length

1 byte,
4 valid
values

1 byte,
arbitrary

≤ 255 bytes,
should be
UTF-8

4 bytes,
arbitrary

this is returned as
OpenPGP plaintext

▸ Problems:

▸ Need to vary the leading part until a plaintext is returned
▸ How to know the offset of returned plaintext into “message”?

©MTG AG Falko Strenzke, Johannes Roth 32/47

Random appearance of LIT Packet in SED (CFB) oracle

▸ Attacker’s ciphertext will decrypt to plaintexts with random appearance

▸ Plaintext must by chance be decodable as LIT Packet

T ∣∣L1[∣∣L2∣∣L3∣∣L4] format f.name len filename date message

2 - 5 bytes
Li : packet length

1 byte,
4 valid
values

1 byte,
arbitrary

≤ 255 bytes,
should be
UTF-8

4 bytes,
arbitrary

this is returned as
OpenPGP plaintext

▸ Problems:

▸ Need to vary the leading part until a plaintext is returned
▸ How to know the offset of returned plaintext into “message”?

©MTG AG Falko Strenzke, Johannes Roth 32/47

Crafting Ciphertexts for the initial oracle question

T ∣∣L1[∣∣L2∣∣L3∣∣L4] format f.name len filename date message

A A B C A A . . .

random cipher blocks, varied until successful decryption
(≈ 100 queries)

oracle cipher blocks, this is what
the attacker wants to decrypt

Repeated pattern
allows determination
of alignment
with high probability

2n question: single query reusing the leading “random” blocks (offset now known):

D E F G H I . . .

©MTG AG Falko Strenzke, Johannes Roth 33/47

Crafting Ciphertexts for the initial oracle question

T ∣∣L1[∣∣L2∣∣L3∣∣L4] format f.name len filename date message

A A B C A A . . .

random cipher blocks, varied until successful decryption
(≈ 100 queries)

oracle cipher blocks, this is what
the attacker wants to decrypt

Repeated pattern
allows determination
of alignment
with high probability

2n question: single query reusing the leading “random” blocks (offset now known):

D E F G H I . . .

©MTG AG Falko Strenzke, Johannes Roth 33/47

Crafting Ciphertexts for the initial oracle question

T ∣∣L1[∣∣L2∣∣L3∣∣L4] format f.name len filename date message

A A B C A A . . .

random cipher blocks, varied until successful decryption
(≈ 100 queries)

oracle cipher blocks, this is what
the attacker wants to decrypt

Repeated pattern
allows determination
of alignment
with high probability

2n question: single query reusing the leading “random” blocks (offset now known):

D E F G H I . . .

©MTG AG Falko Strenzke, Johannes Roth 33/47

1st step ct random block random block oracle-block1 oracle-block2

DCFB(random block) DCFB(random block) DCFB(oracle-block2) DCFB(oracle blockn+1)

oracle-blockn+1

seam block

E() E() E() E() E()

in first query: sequence
of repeated blocks in

LIT packet body

T|L1|...|Ln|O|f|N1|...|Nf|D1|D2|D3|D4| literal data (LIT) packet body

!

sequence of repeated blocks in ciphertext

literal data (LIT) packet header with
length between 6 and 266 bytes

oracle-blockn

DCFB(oracle-blockn)

E()

EECB(oracle-block1) EECB(oracle-blockn)

offset of oracle blocks
in LIT packet body result

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Summary of LibrePGP AEAD OCB Chunk Encryption Attack

▸ Exploit legacy SED Packet decryption to encrypt OCB chunk under same key

▸ Challenge: valid LIT packet must appear in decrypted data

▸ Attack execution:
▸ 1st oracle-question:

▸ vary leading part of the ciphertext, place blocks for ECB encryption at end
▸ many queries (≈ 100)

▸ 2nd oracle-question:

▸ reuse the leading part that was successful
▸ place new blocks for encryption query at the end
▸ single query

▸ High number of queries for 1st question:

▸ possibly compensate by multi-user attack
▸ victim sees only 2 queries which it has to answer

▸ Successfully implemented (C++) against GnuPG

©MTG AG Falko Strenzke, Johannes Roth 35/47

Introduction

Decryption Oracle Attacks against Cryptographic Message Syntax

Plaintext manipulation attacks against LibrePGP AEAD

Plaintext recovery for low entropy blocks in LibrePGP OCB Packets

Legacy Mode Downgrade Attacks against AES Key Wrap

Conclusion

©MTG AG Falko Strenzke, Johannes Roth 36/47

Plaintext recovery for low entropy blocks in
LibrePGP OCB Packets

OCB encryption

▸ . . .

▸ compute mask values:

▸ Ek([0]128) // 1st oracle-question
▸ f = Ek(N[1 ∶ 122] ∥ [0]6) // 1st oracle-question
▸ G0 = . . .

▸ For 1 ≤ i ≤ block count

▸ Gi = Gi−1 ⊕ Lntz(i) // (1st oracle-question)
▸ Ci = Gi ⊕ Ek(Pi ⊕Gi) // 2nd oracle-question: Guesses for Pt

▸ si = si−1 ⊕ Pi

▸ . . .

▸ T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A) // not needed

Gi known through
fist oracle-question.
Assume low entropy
plaintext block Pt .
Guess for Pt implies
guess for Ct .

compute with CFB-oracle

©MTG AG Falko Strenzke, Johannes Roth 37/47

Plaintext recovery for low entropy blocks in
LibrePGP OCB Packets

OCB encryption

▸ . . .

▸ compute mask values:

▸ Ek([0]128) // 1st oracle-question
▸ f = Ek(N[1 ∶ 122] ∥ [0]6) // 1st oracle-question
▸ G0 = . . .

▸ For 1 ≤ i ≤ block count

▸ Gi = Gi−1 ⊕ Lntz(i) // (1st oracle-question)
▸ Ci = Gi ⊕ Ek(Pi ⊕Gi) // 2nd oracle-question: Guesses for Pt

▸ si = si−1 ⊕ Pi

▸ . . .

▸ T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A) // not needed

Gi known through
fist oracle-question.
Assume low entropy
plaintext block Pt .
Guess for Pt implies
guess for Ct .

compute with CFB-oracle

©MTG AG Falko Strenzke, Johannes Roth 37/47

Plaintext recovery for low entropy blocks in
LibrePGP OCB Packets

OCB encryption

▸ . . .

▸ compute mask values:

▸ Ek([0]128) // 1st oracle-question
▸ f = Ek(N[1 ∶ 122] ∥ [0]6) // 1st oracle-question
▸ G0 = . . .

▸ For 1 ≤ i ≤ block count

▸ Gi = Gi−1 ⊕ Lntz(i) // (1st oracle-question)
▸ Ci = Gi ⊕ Ek(Pi ⊕Gi) // 2nd oracle-question: Guesses for Pt

▸ si = si−1 ⊕ Pi

▸ . . .

▸ T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A) // not needed

Gi known through
fist oracle-question.
Assume low entropy
plaintext block Pt .
Guess for Pt implies
guess for Ct .

compute with CFB-oracle

©MTG AG Falko Strenzke, Johannes Roth 37/47

Plaintext recovery for low entropy blocks in
LibrePGP OCB Packets

OCB encryption

▸ . . .

▸ compute mask values:

▸ Ek([0]128) // 1st oracle-question
▸ f = Ek(N[1 ∶ 122] ∥ [0]6) // 1st oracle-question
▸ G0 = . . .

▸ For 1 ≤ i ≤ block count

▸ Gi = Gi−1 ⊕ Lntz(i) // (1st oracle-question)
▸ Ci = Gi ⊕ Ek(Pi ⊕Gi) // 2nd oracle-question: Guesses for Pt

▸ si = si−1 ⊕ Pi

▸ . . .

▸ T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A) // not needed

Gi known through
fist oracle-question.
Assume low entropy
plaintext block Pt .
Guess for Pt implies
guess for Ct .

compute with CFB-oracle

©MTG AG Falko Strenzke, Johannes Roth 37/47

Plaintext recovery for low entropy blocks in
LibrePGP OCB Packets

OCB encryption

▸ . . .

▸ compute mask values:

▸ Ek([0]128) // 1st oracle-question
▸ f = Ek(N[1 ∶ 122] ∥ [0]6) // 1st oracle-question
▸ G0 = . . .

▸ For 1 ≤ i ≤ block count

▸ Gi = Gi−1 ⊕ Lntz(i) // (1st oracle-question)
▸ Ci = Gi ⊕ Ek(Pi ⊕Gi) // 2nd oracle-question: Guesses for Pt

▸ si = si−1 ⊕ Pi

▸ . . .

▸ T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A) // not needed

Gi known through
fist oracle-question.
Assume low entropy
plaintext block Pt .
Guess for Pt implies
guess for Ct .

compute with CFB-oracle

©MTG AG Falko Strenzke, Johannes Roth 37/47

Plaintext recovery for low entropy blocks in
LibrePGP OCB Packets

OCB encryption

▸ . . .

▸ compute mask values:

▸ Ek([0]128) // 1st oracle-question
▸ f = Ek(N[1 ∶ 122] ∥ [0]6) // 1st oracle-question
▸ G0 = . . .

▸ For 1 ≤ i ≤ block count

▸ Gi = Gi−1 ⊕ Lntz(i) // (1st oracle-question)
▸ Ci = Gi ⊕ Ek(Pi ⊕Gi) // 2nd oracle-question: Guesses for Pt

▸ si = si−1 ⊕ Pi

▸ . . .

▸ T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A) // not needed

Gi known through
fist oracle-question.
Assume low entropy
plaintext block Pt .
Guess for Pt implies
guess for Ct .

compute with CFB-oracle

©MTG AG Falko Strenzke, Johannes Roth 37/47

Plaintext recovery for low entropy blocks in
LibrePGP OCB Packets

OCB encryption

▸ . . .

▸ compute mask values:

▸ Ek([0]128) // 1st oracle-question
▸ f = Ek(N[1 ∶ 122] ∥ [0]6) // 1st oracle-question
▸ G0 = . . .

▸ For 1 ≤ i ≤ block count

▸ Gi = Gi−1 ⊕ Lntz(i) // (1st oracle-question)
▸ Ci = Gi ⊕ Ek(Pi ⊕Gi) // 2nd oracle-question: Guesses for Pt

▸ si = si−1 ⊕ Pi

▸ . . .

▸ T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A) // not needed

Gi known through
fist oracle-question.
Assume low entropy
plaintext block Pt .
Guess for Pt implies
guess for Ct .

compute with CFB-oracle

©MTG AG Falko Strenzke, Johannes Roth 37/47

Plaintext recovery for low entropy blocks in
LibrePGP OCB Packets

OCB encryption

▸ . . .

▸ compute mask values:

▸ Ek([0]128) // 1st oracle-question
▸ f = Ek(N[1 ∶ 122] ∥ [0]6) // 1st oracle-question
▸ G0 = . . .

▸ For 1 ≤ i ≤ block count

▸ Gi = Gi−1 ⊕ Lntz(i) // (1st oracle-question)
▸ Ci = Gi ⊕ Ek(Pi ⊕Gi) // 2nd oracle-question: Guesses for Pt

▸ si = si−1 ⊕ Pi

▸ . . .

▸ T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A) // not needed

Gi known through
fist oracle-question.
Assume low entropy
plaintext block Pt .
Guess for Pt implies
guess for Ct .

compute with CFB-oracle

©MTG AG Falko Strenzke, Johannes Roth 37/47

Plaintext recovery for low entropy blocks in
LibrePGP OCB Packets

OCB encryption

▸ . . .

▸ compute mask values:

▸ Ek([0]128) // 1st oracle-question
▸ f = Ek(N[1 ∶ 122] ∥ [0]6) // 1st oracle-question
▸ G0 = . . .

▸ For 1 ≤ i ≤ block count

▸ Gi = Gi−1 ⊕ Lntz(i) // (1st oracle-question)
▸ Ci = Gi ⊕ Ek(Pi ⊕Gi) // 2nd oracle-question: Guesses for Pt

▸ si = si−1 ⊕ Pi

▸ . . .

▸ T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A) // not needed

Gi known through
fist oracle-question.
Assume low entropy
plaintext block Pt .
Guess for Pt implies
guess for Ct .

compute with CFB-oracle

©MTG AG Falko Strenzke, Johannes Roth 37/47

Plaintext recovery for low entropy blocks in
LibrePGP OCB Packets

OCB encryption

▸ . . .

▸ compute mask values:

▸ Ek([0]128) // 1st oracle-question
▸ f = Ek(N[1 ∶ 122] ∥ [0]6) // 1st oracle-question
▸ G0 = . . .

▸ For 1 ≤ i ≤ block count

▸ Gi = Gi−1 ⊕ Lntz(i) // (1st oracle-question)
▸ Ci = Gi ⊕ Ek(Pi ⊕Gi) // 2nd oracle-question: Guesses for Pt

▸ si = si−1 ⊕ Pi

▸ . . .

▸ T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A) // not needed

Gi known through
fist oracle-question.
Assume low entropy
plaintext block Pt .
Guess for Pt implies
guess for Ct .

compute with CFB-oracle

©MTG AG Falko Strenzke, Johannes Roth 37/47

Plaintext recovery for low entropy blocks in
LibrePGP OCB Packets

OCB encryption

▸ . . .

▸ compute mask values:

▸ Ek([0]128) // 1st oracle-question
▸ f = Ek(N[1 ∶ 122] ∥ [0]6) // 1st oracle-question
▸ G0 = . . .

▸ For 1 ≤ i ≤ block count

▸ Gi = Gi−1 ⊕ Lntz(i) // (1st oracle-question)
▸ Ci = Gi ⊕ Ek(Pi ⊕Gi) // 2nd oracle-question: Guesses for Pt

▸ si = si−1 ⊕ Pi

▸ . . .

▸ T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A) // not needed

Gi known through
fist oracle-question.
Assume low entropy
plaintext block Pt .
Guess for Pt implies
guess for Ct .

compute with CFB-oracle

©MTG AG Falko Strenzke, Johannes Roth 37/47

Plaintext recovery for low entropy blocks in
LibrePGP OCB Packets

OCB encryption

▸ . . .

▸ compute mask values:

▸ Ek([0]128) // 1st oracle-question
▸ f = Ek(N[1 ∶ 122] ∥ [0]6) // 1st oracle-question
▸ G0 = . . .

▸ For 1 ≤ i ≤ block count

▸ Gi = Gi−1 ⊕ Lntz(i) // (1st oracle-question)
▸ Ci = Gi ⊕ Ek(Pi ⊕Gi) // 2nd oracle-question: Guesses for Pt

▸ si = si−1 ⊕ Pi

▸ . . .

▸ T = Ek(sñ ⊕Gñ ⊕ L$) ⊕HASH(K ,A) // not needed

Gi known through
fist oracle-question.
Assume low entropy
plaintext block Pt .
Guess for Pt implies
guess for Ct .

compute with CFB-oracle

©MTG AG Falko Strenzke, Johannes Roth 37/47

Introduction

Decryption Oracle Attacks against Cryptographic Message Syntax

Plaintext manipulation attacks against LibrePGP AEAD

Plaintext recovery for low entropy blocks in LibrePGP OCB Packets

Legacy Mode Downgrade Attacks against AES Key Wrap

Conclusion

©MTG AG Falko Strenzke, Johannes Roth 38/47

Legacy Mode Downgrade Attacks against AES Key Wrap

▸ AES Key Wrap in NIST SP 800-38F, RFC 3394

▸ Key encryption with 64-bit “integrity check register”

▸ AES Key Wrap decryption / unwrap uses only Dk()
▸ CMS defines AES Key Wrap

▸ Legacy encryption mode: CBC
▸ CBC decryption uses block Dk()

▸ is oracle for AES Key Wrap decryption

▸ was observed already by Jager et al.

©MTG AG Falko Strenzke, Johannes Roth 39/47

Legacy Mode Downgrade Attacks against AES Key Wrap

▸ AES Key Wrap in NIST SP 800-38F, RFC 3394

▸ Key encryption with 64-bit “integrity check register”

▸ AES Key Wrap decryption / unwrap uses only Dk()
▸ CMS defines AES Key Wrap

▸ Legacy encryption mode: CBC
▸ CBC decryption uses block Dk()

▸ is oracle for AES Key Wrap decryption

▸ was observed already by Jager et al.

©MTG AG Falko Strenzke, Johannes Roth 39/47

Legacy Mode Downgrade Attacks against AES Key Wrap

▸ AES Key Wrap in NIST SP 800-38F, RFC 3394

▸ Key encryption with 64-bit “integrity check register”

▸ AES Key Wrap decryption / unwrap uses only Dk()
▸ CMS defines AES Key Wrap

▸ Legacy encryption mode: CBC
▸ CBC decryption uses block Dk()

▸ is oracle for AES Key Wrap decryption

▸ was observed already by Jager et al.

©MTG AG Falko Strenzke, Johannes Roth 39/47

Legacy Mode Downgrade Attacks against AES Key Wrap

▸ AES Key Wrap in NIST SP 800-38F, RFC 3394

▸ Key encryption with 64-bit “integrity check register”

▸ AES Key Wrap decryption / unwrap uses only Dk()
▸ CMS defines AES Key Wrap

▸ Legacy encryption mode: CBC
▸ CBC decryption uses block Dk()

▸ is oracle for AES Key Wrap decryption

▸ was observed already by Jager et al.

©MTG AG Falko Strenzke, Johannes Roth 39/47

Legacy Mode Downgrade Attacks against AES Key Wrap

▸ AES Key Wrap in NIST SP 800-38F, RFC 3394

▸ Key encryption with 64-bit “integrity check register”

▸ AES Key Wrap decryption / unwrap uses only Dk()
▸ CMS defines AES Key Wrap

▸ Legacy encryption mode: CBC
▸ CBC decryption uses block Dk()

▸ is oracle for AES Key Wrap decryption

▸ was observed already by Jager et al.

©MTG AG Falko Strenzke, Johannes Roth 39/47

Legacy Mode Downgrade Attacks against AES Key Wrap

▸ AES Key Wrap in NIST SP 800-38F, RFC 3394

▸ Key encryption with 64-bit “integrity check register”

▸ AES Key Wrap decryption / unwrap uses only Dk()
▸ CMS defines AES Key Wrap

▸ Legacy encryption mode: CBC
▸ CBC decryption uses block Dk()

▸ is oracle for AES Key Wrap decryption

▸ was observed already by Jager et al.

©MTG AG Falko Strenzke, Johannes Roth 39/47

Legacy Mode Downgrade Attacks against AES Key Wrap

▸ AES Key Wrap in NIST SP 800-38F, RFC 3394

▸ Key encryption with 64-bit “integrity check register”

▸ AES Key Wrap decryption / unwrap uses only Dk()
▸ CMS defines AES Key Wrap

▸ Legacy encryption mode: CBC
▸ CBC decryption uses block Dk()

▸ is oracle for AES Key Wrap decryption

▸ was observed already by Jager et al.

©MTG AG Falko Strenzke, Johannes Roth 39/47

Legacy Mode Downgrade Attacks against AES Key Wrap

▸ AES Key Wrap in NIST SP 800-38F, RFC 3394

▸ Key encryption with 64-bit “integrity check register”

▸ AES Key Wrap decryption / unwrap uses only Dk()
▸ CMS defines AES Key Wrap

▸ Legacy encryption mode: CBC
▸ CBC decryption uses block Dk()

▸ is oracle for AES Key Wrap decryption

▸ was observed already by Jager et al.

©MTG AG Falko Strenzke, Johannes Roth 39/47

Inputs: Ciphertext , (n+1) 64-bit values {C0, C1, ..., Cn}, and

Key , K (the KEK).

Outputs: Plaintext , n 64-bit values {P1, P2, ..., Pn}.

1) Initialize variables.

Set A[s] = C[0] where s = 6n

For i = 1 to n

R[s][i] = C[i]

c2) Calculate the intermediate values.

For t = s to 1

A[t-1] = MSB(64, AES-1 (K, ((A[t] ^ t) | R[t][n]))

R[t -1][1] = LSB(64, AES-1 (K, ((A[t]^t) | R[t][n]))

For i = 2 to n

R[t-1][i] = R[t][i-1]

3) Output the results.

If A[0] is an appropriate initial value (see 2.2.3) ,

Then

For i = 1 to n

P[i] = R[0][i]

Else

Return an error

©MTG AG Falko Strenzke, Johannes Roth 40/47

Number of oracle-questions

▸ assume 128-bit key:

▸ n = 2
▸ loop iterations: s = 6 × 2 = 12
▸ 12 oracle queries

▸ full plaintext (wrapped key) recovery

▸ CBC padding oracle might be leveraged

©MTG AG Falko Strenzke, Johannes Roth 41/47

Number of oracle-questions

▸ assume 128-bit key:

▸ n = 2
▸ loop iterations: s = 6 × 2 = 12
▸ 12 oracle queries

▸ full plaintext (wrapped key) recovery

▸ CBC padding oracle might be leveraged

©MTG AG Falko Strenzke, Johannes Roth 41/47

Number of oracle-questions

▸ assume 128-bit key:

▸ n = 2
▸ loop iterations: s = 6 × 2 = 12
▸ 12 oracle queries

▸ full plaintext (wrapped key) recovery

▸ CBC padding oracle might be leveraged

©MTG AG Falko Strenzke, Johannes Roth 41/47

Number of oracle-questions

▸ assume 128-bit key:

▸ n = 2
▸ loop iterations: s = 6 × 2 = 12
▸ 12 oracle queries

▸ full plaintext (wrapped key) recovery

▸ CBC padding oracle might be leveraged

©MTG AG Falko Strenzke, Johannes Roth 41/47

Number of oracle-questions

▸ assume 128-bit key:

▸ n = 2
▸ loop iterations: s = 6 × 2 = 12
▸ 12 oracle queries

▸ full plaintext (wrapped key) recovery

▸ CBC padding oracle might be leveraged

©MTG AG Falko Strenzke, Johannes Roth 41/47

Number of oracle-questions

▸ assume 128-bit key:

▸ n = 2
▸ loop iterations: s = 6 × 2 = 12
▸ 12 oracle queries

▸ full plaintext (wrapped key) recovery

▸ CBC padding oracle might be leveraged

©MTG AG Falko Strenzke, Johannes Roth 41/47

Introduction

Decryption Oracle Attacks against Cryptographic Message Syntax

Plaintext manipulation attacks against LibrePGP AEAD

Plaintext recovery for low entropy blocks in LibrePGP OCB Packets

Legacy Mode Downgrade Attacks against AES Key Wrap

Conclusion

©MTG AG Falko Strenzke, Johannes Roth 42/47

Summary

Attacked
AEAD mode
& direction

oracle type Exploited
legacy mode

Nb questions Nb queries

C
M

S AES-CCM,
AES-GCM
decr (low en-
tropy block)

inverse CBC 1 1

AES Key
Wrap decr.

direct ≥ 12 ≥ 12

L
ib

re
P

G
P OCB encr direct

CFB 2 ≈ 100
OCB decr
(low entropy
block)

inverse

©MTG AG Falko Strenzke, Johannes Roth 43/47

Conclusion

▸ Cryptographic design errors in CMS and LibrePGP

▸ email probably not affected (efail countermeasures should prevent this)
▸ Thunderbird seems not affected according to test

▸ Countermeasure

▸ note: signatures don’t protect the integrity of a message
▸ CMS: yes, new RFC (key derivation)

▸ new mechanism, must be implemented and used

▸ LibrePGP:

▸ disable SED decryption
▸ attack still possible against GnuPG
▸ no update of the spec

▸ OpenPGP (RFC 9580):

▸ hard-wired key derivation

©MTG AG Falko Strenzke, Johannes Roth 44/47

Conclusion

▸ Cryptographic design errors in CMS and LibrePGP

▸ email probably not affected (efail countermeasures should prevent this)
▸ Thunderbird seems not affected according to test

▸ Countermeasure

▸ note: signatures don’t protect the integrity of a message
▸ CMS: yes, new RFC (key derivation)

▸ new mechanism, must be implemented and used

▸ LibrePGP:

▸ disable SED decryption
▸ attack still possible against GnuPG
▸ no update of the spec

▸ OpenPGP (RFC 9580):

▸ hard-wired key derivation

©MTG AG Falko Strenzke, Johannes Roth 44/47

Conclusion

▸ Cryptographic design errors in CMS and LibrePGP

▸ email probably not affected (efail countermeasures should prevent this)
▸ Thunderbird seems not affected according to test

▸ Countermeasure

▸ note: signatures don’t protect the integrity of a message
▸ CMS: yes, new RFC (key derivation)

▸ new mechanism, must be implemented and used

▸ LibrePGP:

▸ disable SED decryption
▸ attack still possible against GnuPG
▸ no update of the spec

▸ OpenPGP (RFC 9580):

▸ hard-wired key derivation

©MTG AG Falko Strenzke, Johannes Roth 44/47

Conclusion

▸ Cryptographic design errors in CMS and LibrePGP

▸ email probably not affected (efail countermeasures should prevent this)
▸ Thunderbird seems not affected according to test

▸ Countermeasure

▸ note: signatures don’t protect the integrity of a message
▸ CMS: yes, new RFC (key derivation)

▸ new mechanism, must be implemented and used

▸ LibrePGP:

▸ disable SED decryption
▸ attack still possible against GnuPG
▸ no update of the spec

▸ OpenPGP (RFC 9580):

▸ hard-wired key derivation

©MTG AG Falko Strenzke, Johannes Roth 44/47

Conclusion

▸ Cryptographic design errors in CMS and LibrePGP

▸ email probably not affected (efail countermeasures should prevent this)
▸ Thunderbird seems not affected according to test

▸ Countermeasure

▸ note: signatures don’t protect the integrity of a message
▸ CMS: yes, new RFC (key derivation)

▸ new mechanism, must be implemented and used

▸ LibrePGP:

▸ disable SED decryption
▸ attack still possible against GnuPG
▸ no update of the spec

▸ OpenPGP (RFC 9580):

▸ hard-wired key derivation

©MTG AG Falko Strenzke, Johannes Roth 44/47

Conclusion

▸ Cryptographic design errors in CMS and LibrePGP

▸ email probably not affected (efail countermeasures should prevent this)
▸ Thunderbird seems not affected according to test

▸ Countermeasure

▸ note: signatures don’t protect the integrity of a message
▸ CMS: yes, new RFC (key derivation)

▸ new mechanism, must be implemented and used

▸ LibrePGP:

▸ disable SED decryption
▸ attack still possible against GnuPG
▸ no update of the spec

▸ OpenPGP (RFC 9580):

▸ hard-wired key derivation

©MTG AG Falko Strenzke, Johannes Roth 44/47

Conclusion

▸ Cryptographic design errors in CMS and LibrePGP

▸ email probably not affected (efail countermeasures should prevent this)
▸ Thunderbird seems not affected according to test

▸ Countermeasure

▸ note: signatures don’t protect the integrity of a message
▸ CMS: yes, new RFC (key derivation)

▸ new mechanism, must be implemented and used

▸ LibrePGP:

▸ disable SED decryption
▸ attack still possible against GnuPG
▸ no update of the spec

▸ OpenPGP (RFC 9580):

▸ hard-wired key derivation

©MTG AG Falko Strenzke, Johannes Roth 44/47

Conclusion

▸ Cryptographic design errors in CMS and LibrePGP

▸ email probably not affected (efail countermeasures should prevent this)
▸ Thunderbird seems not affected according to test

▸ Countermeasure

▸ note: signatures don’t protect the integrity of a message
▸ CMS: yes, new RFC (key derivation)

▸ new mechanism, must be implemented and used

▸ LibrePGP:

▸ disable SED decryption
▸ attack still possible against GnuPG
▸ no update of the spec

▸ OpenPGP (RFC 9580):

▸ hard-wired key derivation

©MTG AG Falko Strenzke, Johannes Roth 44/47

Conclusion

▸ Cryptographic design errors in CMS and LibrePGP

▸ email probably not affected (efail countermeasures should prevent this)
▸ Thunderbird seems not affected according to test

▸ Countermeasure

▸ note: signatures don’t protect the integrity of a message
▸ CMS: yes, new RFC (key derivation)

▸ new mechanism, must be implemented and used

▸ LibrePGP:

▸ disable SED decryption
▸ attack still possible against GnuPG
▸ no update of the spec

▸ OpenPGP (RFC 9580):

▸ hard-wired key derivation

©MTG AG Falko Strenzke, Johannes Roth 44/47

Conclusion

▸ Cryptographic design errors in CMS and LibrePGP

▸ email probably not affected (efail countermeasures should prevent this)
▸ Thunderbird seems not affected according to test

▸ Countermeasure

▸ note: signatures don’t protect the integrity of a message
▸ CMS: yes, new RFC (key derivation)

▸ new mechanism, must be implemented and used

▸ LibrePGP:

▸ disable SED decryption
▸ attack still possible against GnuPG
▸ no update of the spec

▸ OpenPGP (RFC 9580):

▸ hard-wired key derivation

©MTG AG Falko Strenzke, Johannes Roth 44/47

Conclusion

▸ Cryptographic design errors in CMS and LibrePGP

▸ email probably not affected (efail countermeasures should prevent this)
▸ Thunderbird seems not affected according to test

▸ Countermeasure

▸ note: signatures don’t protect the integrity of a message
▸ CMS: yes, new RFC (key derivation)

▸ new mechanism, must be implemented and used

▸ LibrePGP:

▸ disable SED decryption
▸ attack still possible against GnuPG
▸ no update of the spec

▸ OpenPGP (RFC 9580):

▸ hard-wired key derivation

©MTG AG Falko Strenzke, Johannes Roth 44/47

Conclusion

▸ Cryptographic design errors in CMS and LibrePGP

▸ email probably not affected (efail countermeasures should prevent this)
▸ Thunderbird seems not affected according to test

▸ Countermeasure

▸ note: signatures don’t protect the integrity of a message
▸ CMS: yes, new RFC (key derivation)

▸ new mechanism, must be implemented and used

▸ LibrePGP:

▸ disable SED decryption
▸ attack still possible against GnuPG
▸ no update of the spec

▸ OpenPGP (RFC 9580):

▸ hard-wired key derivation

©MTG AG Falko Strenzke, Johannes Roth 44/47

Conclusion

▸ Cryptographic design errors in CMS and LibrePGP

▸ email probably not affected (efail countermeasures should prevent this)
▸ Thunderbird seems not affected according to test

▸ Countermeasure

▸ note: signatures don’t protect the integrity of a message
▸ CMS: yes, new RFC (key derivation)

▸ new mechanism, must be implemented and used

▸ LibrePGP:

▸ disable SED decryption
▸ attack still possible against GnuPG
▸ no update of the spec

▸ OpenPGP (RFC 9580):

▸ hard-wired key derivation

©MTG AG Falko Strenzke, Johannes Roth 44/47

Thank you for your attention

Dr. Falko Strenzke
falko.strenzke@mtg.de
+49 6151 8000-24

MTG AG
www.mtg.de

©MTG AG Falko Strenzke, Johannes Roth 45/47

AEAD in RFC 9580

©MTG AG Falko Strenzke, Johannes Roth 46/47

+----------------------+ +-------------+

| decrypted session key| | salt value |

+----------------------+ +-----+-------+ +----------------------+

| | | packet tag | ******************

| v (SALT) | version number | * RFC 9580 AEAD *

| (IKM) +-------------------+ (INFO) | cipher algo octet | * key derivation *

+-------->| HKDF | <---------| AEAD algo octet | ******************

+-------------------+ | chunk size |

| | |

| M + N - 64 bits +----------------------+

v

+-----------------+----------------+

| leftmost M bits | N - 64 bits |

+-----------------+----------------+

| |

| |

| |

| |

| | +---------------------+

| +----------------| 64 bit chunk number |

(KEY) | +-------------+ +---------------------+

| | (INIT. VEC. +-----------------+ +-------------------------------------+

v v / NONCE) +--------| plaintext chunk | | (empty str., AD incl. plaint. size) |

+-----------------+ <----------+ +-----------------+ +-------------------------------------+

| AEAD encrypt. |

+-----------------+ --------+

^ | +------------------+ +-----------+ +--------------------+

+-------------------+ | +--------> | ciphertext chunk | | auth. tag | ... | final auth. tag |

| packet tag | | +------------------+ +-----------+ +--------------------+

| version nr. | | ^

| cipher algo octet | | |

| AEAD algo octet | (ADD. DATA) | further ciphertext

| chunk size |-------------+ chunks with tags

| |

+-------------------+

	Introduction
	Decryption Oracle Attacks against Cryptographic Message Syntax
	Plaintext manipulation attacks against LibrePGP AEAD
	Plaintext recovery for low entropy blocks in LibrePGP OCB Packets
	Legacy Mode Downgrade Attacks against AES Key Wrap
	Conclusion

