
Efficiency and Implementation Security
of Code-based Cryptosystems

Vom Fachbereich Informatik der

Technischen Universität Darmstadt genehmigte

Dissertation

zu Erlangung des Grades

Doctor rerum naturalium (Dr. rer. nat.)

von

Dipl.-Phys. Falko Strenzke

geboren in Wolfenbüttel.
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Abstract

This thesis studies efficiency and security problems of implementations of code-based
cryptosystems. These cryptosystems, though not currently used in the field, are of great
scientific interest, since no quantum algorithm is known that breaks them essentially
faster than any known classical algorithm. This qualifies them as cryptographic schemes
for the quantum-computer era, where the currently used cryptographic schemes are
rendered insecure.

Concerning the efficiency of these schemes, we propose a solution for the handling of
the public keys, which are, compared to the currently used schemes, of an enormous size.
Here, the focus lies on resource-constrained devices, which are not capable of storing a
code-based public key of communication partner in their volatile memory. Furthermore,
we show a solution for the decryption without the parity check matrix with a passable
speed penalty. This is also of great importance, since this matrix is of a size that is
comparable to that of the public key. Thus, the employment of this matrix on memory-
constrained devices is not possible or incurs a large cost.

Subsequently, we present an analysis of improvements to the generally most time-
consuming part of the decryption operation, which is the determination of the roots of
the error locator polynomial. We compare a number of known algorithmic variants and
new combinations thereof in terms of running time and memory demands. Though the
speed of pure software implementations must be seen as one of the strong sides of code-
based schemes, the optimisation of their running time on resource-constrained devices
and servers is of great relevance.

The second essential part of the thesis studies the side channel security of these
schemes. A side channel vulnerability is given when an attacker is able to retrieve
information about the secrets involved in a cryptographic operation by measuring physi-
cal quantities such as the running time or the power consumption during that operation.
Specifically, we consider attacks on the decryption operation, which either target the
message or the secret key. In most cases, concrete countermeasures are proposed and
evaluated. In this context, we show a number of timing vulnerabilities that are linked to
the algorithmic variants for the root-finding of the error locator polynomial mentioned
above. Furthermore, we show a timing attack against a vulnerability in the Extended
Euclidean Algorithm that is used to solve the so-called key equation during the decryp-
tion operation, which aims at the recovery of the message. We also present a related
practical power analysis attack. Concluding, we present a practical timing attack that
targets the secret key, which is based on the combination of three vulnerabilities, located
within the syndrome inversion, a further suboperation of the decryption, and the already
mentioned solving of the key equation.

We compare the attacks that aim at the recovery of the message with the analogous
attacks against the RSA cryptosystem and derive a general methodology for the discovery
of the underlying vulnerabilities in cryptosystems with specific properties.

Furthermore, we present two implementations of the code-based McEliece cryptosys-
tem: a smart card implementation and flexible implementation, which is based on a
previous open-source implementation. The previously existing open-source implemen-
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tation was extended to be platform independent and optimised for resource-constrained
devices. In addition, we added all algorithmic variants presented in this thesis, and
we present all relevant performance data such as running time, code size and memory
consumption for these variants on an embedded platform. Moreover, we implemented
all side channel countermeasures developed in this work.

Concluding, we present open research questions, which will become relevant once
efficient and secure implementations of code-based cryptosystems are evaluated by the
industry for an actual application.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit Effizienz- und Sicherheitsproblemen bei der Im-
plementierung von Code-basierten Public-Key Verschlüsselungsverfahren. Diese Ver-
fahren, obwohl derzeit nicht in Verwendung, sind von großem wissenschaftlichen Inter-
esse, da kein Quantenalgorithmus bekannt ist, der diese entscheidend effizienter brechen
kann als ein klassischer Algorithmus. Dies macht sie zu Kandidaten für die Quantencom-
puterära, in der die heute verwendeten Public-Key Verschlüsselungsverfahren unsicher
werden.

Bezüglich der Effizienz wird eine Lösung für die Handhabung der bei dieser Art von
Verfahren im Vergleich mit den heute im Einsatz befindlichen extrem großen öffentlichen
Schlüsseln vorgestellt. Dabei liegt der Fokus auf ressourcenbeschränkten Geräten, die
nicht in der Lage sind, den öffentlichen Schlüssel eines Kommunikationspartners im
flüchtigen Speicher zu halten. Ferner wird eine Lösung aufgezeigt, mit der die Entschlüsselung
auch ohne die Parity Check Matrix mit vertretbaren Geschwindigkeitseinbußen möglich
ist. Dies ist ebenso von großer Bedeutung, da diese Matrix von vergleichbarer Größe ist
wie der öffentliche Schlüssel, und somit eine Verwendung derselben auf speicherarmen
Geräten nicht möglich oder mit hohen Kosten verbunden ist.

Es wird auch eine Untersuchung zur Verbesserung der Laufzeit der im Allgemeinen
rechenintensivsten Teiloperation bei der Entschlüsselung, dem Finden der Nullstellen des
Fehlerlokatorpolynoms, vorgestellt. Hierbei werden verschiedene bekannte algorithmis-
che Varianten und neue Kombinationen derselben in Bezug auf Laufzeit und Speicheran-
forderungen verglichen. Obwohl die Geschwindigkeit reiner Softwareimplementierungen
gerade als eine der Stärken der Code-basierten Verfahren angesehen werden muss, ist
die Optimierung der Laufzeit sowohl auf ressourcenbeschränkten Plattformen als auch
auf Servern von großer Relevanz.

Der zweite wesentliche Teil der Arbeit befasst sich mit der Seitenkanalsicherheit dieser
Verfahren. Seitenkanalschwachstellen bedeuten, dass ein Angreifer während einer kryp-
tographischen Operation durch die Messung physikalischer Größen wie der Laufzeit der
Berechnung oder der Leistungsaufnahme des Geräts während der Operation Informa-
tionen über an der Berechnung beteiligte geheime Informationen erhält. Dabei werden
Angriffe auf die Entschlüsselungsoperation betrachtet, die entweder auf die Rekonstruk-
tion der Nachricht oder des geheimen Schlüssels abzielen, und in den meisten Fällen
konkrete Gegenmaßnahmen vorgeschlagen und evaluiert. In diesem Zusammenhang wer-
den eine Reihe von Laufzeitschwachstellen aufgezeigt, welche mit manchen der bereits
oben erwähnten algorithmischen Varianten für das Finden der Nullstellen des Fehler-
lokatorpolynoms zusammenhängen. Des Weiteren wird ein Laufzeitangriff gegen eine
Schwachstelle des bei der Entschlüsselung verwendeten erweiterten Euklidischen Algo-
rithmus zur Lösung der sogenannten Key Equation vorgestellt, der auf die Rekonstruk-
tion der Nachricht abzielt. Hierzu wird auch eine praktische Leistungsaufnahmeattacke
vorgeführt. Schließlich wird eine praktische Laufzeitattacke zur Rekonstruktion des
geheimen Schlüssels vorgestellt, die auf der Kombination von drei Schwachstellen in-
nerhalb der Syndrominvertierung, einer weiteren Teiloperation der Entschlüsselung, und
der schon erwähnten Lösung der Key Equation beruht.

V



Die Angriffe, die die Rekonstruktion der Nachricht zum Ziel haben, werden mit ihrem
Analogon für das RSA Public Key Verschlüsselungsverfahren verglichen, und es wird
eine allgemeine Methodologie für das Auffinden der in solchen Fällen zugrunde liegenden
Schwachstellen entwickelt.

Ferner werden zwei Implementierungen des Code-basierten McEliece Verschlüsselungs-
verfahrens vorgestellt: Eine Smartcard-Implementierung und eine auf einer quelloffenen
PC Implementierung basierende flexible Implementierung. Die bestehende quelloffene
Implementierung wurde dahingehend erweitert, dass sie plattformunabhänig wurde und
für ressourcenbeschränkte Geräte optimiert wurde. Außerdem wurden dort alle in dieser
Arbeit vorgestellten algorithmischen Varianten integriert, für die jeweils alle relevanten
Performanzdaten wie Laufzeit, Code-Größe und Speicherverbrauch auf einem eingebet-
teten System vorgestellt werden. Ferner wurden die erarbeiteten Seitenkanalgegenmaß-
nahmen implementiert.

Zuletzt werden in dieser Arbeit offen bleibende Forschungsfragen vorgestellt, die Rel-
evanz erhalten werden, sobald effiziente und sichere Implementierungen Code-basierter
Verfahren von der Industrie für den Einsatz evaluiert werden.
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1. Introduction

In the past, the science of cryptography has been known to be crucial to military and
confidential governmental communication security. With the rise of the internet the role
cryptography plays has changed significantly. Today, in the whole world, computer users
rely on cryptographic security mechanisms when they access the internet and use secure
login to mail servers and web sessions secured by SSL/TLS. Furthermore, information
technology becomes more and more pervasive as countless types of machines and devices
like cars, smartphones, and control units for infrastructure components are connected
to the internet for numerous types of services. For instance, many of these devices rely
on public key cryptography to authenticate software updates. Accordingly, in the past
years, the media coverage of information technology security incidents has increased, as
it becomes more and more obvious that almost all citizens are potentially affected when
bank account data and other confidential information is leaked to malicious parties or
critical infrastructures such as power plants are threatened by sabotage that is possible
by exploiting software vulnerabilities.

However, none of the past incidents have shaken the pillars of information security,
which are formed by the public key primitives that provide authenticity and confidential-
ity in message exchange: these are mainly RSA as a signature and encryption scheme,
Diffie-Hellmann as a key exchange scheme, Elgamal as an encryption scheme, and DSA
and ECDSA as signature schemes. Though the growth of computational power through
technological advances today demands the use of larger key sizes than at the time of the
proposal of the these schemes, their security in principle is still unquestioned.

But this situation is threatened by a new technology: quantum information technology.
This technology is founded on the science of quantum information theory, which describes
the information processing that is possible when the information carriers follow the laws
of quantum mechanics. While in principle these laws apply to all matter, it demands
special conditions for these effects to be actually observed. A computer that works under
these conditions is referred to as a quantum computer. In 1997, Peter W. Shor published
a quantum algorithm, i.e. an algorithm that runs on a quantum computer but not on
a classical computer, which is able to break all schemes based on the factorization and
discrete logarithm problems [10]. Unfortunately, this encompasses all the schemes listed
above as the current pillars for information security.

However, today, no quantum computer can be build that is actually able carry out
these algorithms in order to break keys of realistic sizes. Currently, scientists are still
struggling for the breakthrough in quantum information technology that enables them
to realise useful quantum computers. No one can tell whether or when this breakthrough
is going to happen. The only the thing that is clear is that once it happens, our pillars of
information security will fall. As the dependency of the technologically highly developed
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1. Introduction

societies on secure information technology is ceaselessly growing, the impact of this
milestone event can hardly be overestimated. Furthermore, it must be assumed that
certain parties involved in quantum technology research, like for instance secret agencies,
will not necessarily inform the public about their progress in this field. Accordingly, it
can be assumed that it is only a question of time until this topic will receive greater
awareness by authorities and the public; and the pending problems and uncertainties
will have to be answered by concrete measures. The final goal is of course to find public
key schemes that are resistant to quantum algorithms, and thus can be used to replace
the current ones. Such schemes are commonly referred to as post-quantum cryptographic
schemes.

Concerning digital signatures, which are used to provide a proof that a certain message
originates from a specific sender, and encryption, the purpose of which is to ensure
the confidentiality of messages, there exists a large difference concerning the impact of
the realisation of quantum computers: assuming that a document was signed using an
algorithm which must be feared to be broken within a short time, it is possible to renew
the signature using another algorithm that is still regarded as secure. For encryption
schemes, there is no similar escape: any message encrypted today and sent over an
unsecured channel can be intercepted and stored, and decrypted once it is technologically
possible to break the employed encryption algorithm.

For this reason, it is especially important to find public key encryption schemes, also
referred to as public key cryptosystems (PKCs), that can be regarded as secure in the
presence of quantum computers and can be used as a replacement for the currently
used PKCs. As a consequence, we have chosen the McEliece [11] and Niederreiter [12]
PKCs as the topic of our thesis. The McEliece scheme has been proposed already
in 1978. But due to its large public key size, it has almost never experienced any
use in real world applications and not received much interest from researchers. The
Niederreiter scheme was proposed a few years later but shares all basic properties with
the McEliece scheme. Both schemes are built on error correcting codes and are considered
immune to quantum computer attacks [13], and thus, are of great interest as candidates
for post-quantum encryption schemes. Accordingly, since recently the post-quantum
question has experienced increased attention, they have received growing interest from
researchers in the past years and been analysed with respect to efficiency on various
platforms [14, 15, 16, 17]. Furthermore, some researchers have investigated the side
channel security of code-based cryptosystems [18, 19].

Concerning the efficiency of code-based cryptosystems, as for any cryptographic scheme,
the two main aspects are the running times of the operations and the memory demands.

The running times of the encryption and decryption operation are the strong side of
these schemes. Nevertheless, there are certain applications where maximal optimization
of the running time of software implementations is of great interest: the first is the
implementation of cryptosystems for servers. Today, the server-side implementation of
SSL/TLS in large-scale services is known to be a big cost problem. Thus, improvements
in the running time always are of great importance for this purpose. The second appli-
cation of cryptosystems where reduction of running times is of major relevance is given
in the context of resource constrained platforms such as smart cards. On such platforms,
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the currently employed public key schemes such as RSA or ECDSA can only be run in
passable time if hardware support is present. Accordingly, it is of great interest to know
what running times can be achieved on such platforms by pure software implementa-
tions of code-based schemes. This helps to estimate the cost for developing platforms
that support code-based cryptosystems and could replace today’s RSA and elliptic curve
centered smart cards.

The other great performance aspect, that of memory requirements, is per se the greater
challenge for code-based cryptosystems. This is primarily due to the large public key size
that characterizes these schemes. Due to the fact that communication partners usually
vary considerably in public key infrastructure scenarios, it would be the best choice to
store the public keys in the RAM. However, the amount of RAM typically available on
devices such as smart cards or other low cost microcontrollers is far too small to hold
these keys. Accordingly, one would have to store them in non-volatile memory, which
comes at the disadvantages of the slower writing speed and the smaller number of write
cycles in the memory module’s lifetime, not to mention the cost of keeping available such
an amount of memory. But also the private key size as it is found in the implementation
choices made in recent publications of the McEliece scheme poses a big cost problem.
Many low cost embedded microcontrollers would be incapable of storing such a large
McEliece private key at all.

In this thesis, we address both of these fundamental performance aspects. Concerning
the running times, we turn to the most time-consuming part of the code-based decryp-
tion operation, which is the finding of the roots of the error locator polynomial. We
analyse a number of different previously published variants for this computational task.
Some of these algorithms have already been employed in implementations of code-based
cryptosystems presented in recent publications. Others have so far only been proposed
for error correcting codes in their genuine field of application. We also introduce new
hybrid algorithms. We find that considerable differences in the performance exist be-
tween the basic variants and that the hybrid algorithms allow a further improvement in
the running time.

Furthermore, we address the challenge of the huge public key size of these schemes,
which amounts to at least 100 KB for code parameters that provide reasonable secu-
rity. Specifically, we turn to the scenario where a resource constrained device needs to
perform the encryption operation using the public key of a communication partner. In
contrast to previous works, where the public key is stored on the device [4, 15, 16], we
propose a different approach: the public key is processed on-line as it is input into the
encrypting device. This requires only a small amount of RAM and removes the need to
reserve a large portion of non-volatile memory. As a result, we find that even current
embedded CPUs allow for a computation speed that is not matched by the technolog-
ically possible transmission rates available in the context of smart cards. This means
that a solution that gives a better performance in this scenario makes it necessary to
improve the transmission rates of the smart card interface.

The private key size of both the McEliece and the Niederreiter scheme is in the same
range as that of the public keys. However, for the McEliece scheme, this is an implemen-
tation choice: the large size stems from the parity check matrix, which is used to speed
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1. Introduction

up decryptions in all previously published implementations of the scheme [4, 16, 17, 20],
but it is not an essential part of the private key. Because the storage of a large private
key of more than 100 kB poses a significant burden for resource constrained systems
such as smart cards, we explore the impact on the running time if the decryption is
performed without this matrix. To this end, we develop an optimized algorithm for this
computational task. In an example implementation on an embedded CPU we show that,
for code parameters with a security level of about 120 bit, the decryption without the
parity check matrix is about half as fast as if the parity check matrix was used.

The second major part of this thesis addresses the side channel security of code-
based schemes. Side channel security is a very important implementation aspect of any
cryptographic algorithm. A side channel is given when a physical observable quantity
that is measured during the operation of a cryptographic device allows an attacker to
gain information about a secret that is involved in the cryptographic operation. The
usual observables used in this respect are the duration of the operation (timing attacks
[21]), or the power consumption as a function over time (power analysis attacks[22]),
where targets of such attacks can be secret keys as well as messages.

Code-based schemes are not yet used in the field, however, it is important to study
their side channel security already today. There are two main reasons for this: first of
all, the amount and severity of side channel problems in a cryptographic scheme should
be taken into account during the evaluation of its suitability. Concerning the cache-
timing attacks against AES, the evaluation can be regarded to have been incomplete
in this point [23]. This means, at the point where a certain committee decides about
the future post-quantum cryptosystem to replace RSA, they will have to carefully weigh
all implementation aspects of the candidates. But this presumes that at least a basic
side channel analysis of all candidate schemes is available. The second reason for the
necessity of an understanding of the scheme’s side channel issues is that once the decision
for its field application is taken, it is likely that there will be a tight time schedule for
the detailed algorithmic specifications. On the one hand, the design of smart card
hardware and software including the security evaluations will take years, on the other
hand the advances in the field of quantum computing could possibly become threatening
abruptly. From these considerations, it becomes apparent that at least the fundamental
side channel issues must be known for the community to be able to work out concrete
algorithmic specifications for the secure implementation of code-based schemes within a
limited time frame.

As a consequence, in this thesis we perform a thorough side-channel analysis of code-
based schemes. It focusses on the decryption operation, as it involves the message and
the secret key as secrets. Accordingly, we performed an analysis of side channel vulnera-
bilities leaking either secret. For both types of attacks we found a number of vulnerabili-
ties. For each vulnerability, we give the theoretical derivations and present experimental
results. Where appropriate, we also provide a concrete attack and countermeasures.

All the message-aimed attacks exploit the effect that the number of bit flip errors in the
ciphertext, the introduction of which is part of the regular encryption operation of these
schemes, has a pervasive effect on the course of the decryption process. Different parts
of this algorithm exhibit dependencies of their timing on this ciphertext property. This
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allows a simple attack scheme, where the attacker manipulates an original ciphertext he
wishes to decrypt and measures its decryption time. The information he gains through
this process allows him to recover the message. For this type of attack, we present
two timing attacks, exploiting timing differences stemming from different parts of the
decryption algorithm. Our timing attacks were the first side channel attacks against
code-based cryptosystems in the literature. Furthermore, we present a simple power
analysis attack that is straightforwardly derived from the latter timing attack. As our
last contribution to the topic of message-aimed attacks, we show that one of the root-
finding variants that are already subject of the above-mentioned performance analysis
exhibits a dramatic timing vulnerability with respect to message-aimed attacks.

We also analyse the relation of the message-aimed timing attacks against code-based
cryptosystems to those against the RSA cryptosystem. In the course of this, we de-
rive a methodology for the analysis of public key cryptosystems with certain properties
with respect to this kind of attack. Furthermore, we discuss the situation of generic
countermeasures for such attacks. We find that for the code-based schemes, such coun-
termeasures are possible only at the expense of security, which has to be compensated
by larger code parameters.

We also present two types of vulnerabilities that allow attacks against the secret key.
For the first type, we present a practical attack that combines three different side channel
vulnerabilities of the code-based decryption. All of these vulnerabilities employ specially
crafted ciphertexts which feature only a small number of errors. Subtle differences in the
control flow allow the attacker to collect linear and cubic equations, which eventually lead
to the recovery of the whole private key. As the second type of key-aimed vulnerability,
we demonstrate a timing vulnerability against one of the root-finding variants, which
potentially also allows the complete recovery of the secret key. These are the first key-
aimed timing attacks against code-based cryptosystems in the literature.

Concluding our contributions, we present two embedded implementations. The first
one is an implementation based on a previous open source implementation. It features
all the algorithmic variants (i.e. decryption with and without the parity check matrix,
and the various root-finding variants) and side channel countermeasures presented in
this thesis. We provide a detailed overview of the time and memory requirements of
all these algorithmic variants on an embedded platform. The results show that the best
algorithmic choice allows for efficient implementations on resource constrained platforms
even without dedicated hardware support for code-based cryptosystems. The second one
is an implementation on an actual smart card with fewer algorithmic optimizations. It
shows that even under this condition and without hardware support, it is possible to
implement the encryption and decryption operations with running times adequate at
least for certain applications.

Before we come to the outline of this thesis’ structure, we have to mention an important
detail that applies to all our analyses: In this work, we restrict ourselves to the McEliece
and Niederreiter schemes built on binary irreducible Goppa Codes as originally proposed
for the McEliece scheme. Recently, a number of attempts have been made to reduce the
large public key size of these schemes, by employing codes that exhibit a certain structure
[24, 25, 26]. We justify the omission of these schemes in our analysis with the following
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reasons: since a number of these attempts has already been shown to result in insecure
cryptosystems [27, 28, 29], we conclude that all the recent proposals that reduce the
key size using other codes than in the original McEliece scheme will have to prevail for
some time until they can be granted the same trust as the original scheme, the security
of which is still unquestioned after more than 30 years. For the sake of completeness,
it is worth mentioning that there has been, in principle, a substantial reduction of the
security of code-based PKCs [30], however this only applies to code parameter choices
that are relevant for code-based signature schemes [31].

The structure of this thesis is as follows: In Chapter 2, we provide the fundamentals
about the McEliece and Niederreiter cryptosystems. Next, in Chapter 3, we present
our contributions to the performance aspects of the scheme. Afterwards, in Chapter
4, we present our results concerning the side channel security of the scheme. The two
embedded implementations mentioned above are the topic of Chapter 5. Open problems
that are not solved in this thesis are addressed in Chapter 6. Finally, we give a conclusion
in Chapter 7.
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2. Preliminaries

In this section we introduce the McEliece and Niederreiter public key cryptosystems.
The McEliece scheme was introduced R.J. McEliece in 1978 [11]. It thus appeared
about at the same time as the RSA scheme. H. Niederreiter introduced his scheme in
1986 [12]. However, neither the McEliece or the Niederreiter scheme has experienced
much attention until the post-quantum cryptography question arose. This is due to the
fact that, as we will see in the later chapters, the key sizes of these schemes are far
greater than those of RSA or Elgamal cryptosystems.

In the following, we give first give basic preliminaries about Goppa Codes (Section
2.1) and then introduce the code-based PKCs (Sections 2.2 and 2.3).

2.1. The Patterson Algorithm for the Decoding of Goppa
Codes

Goppa codes [32] are a class of linear error correcting codes. The McEliece PKC makes
use of irreducible binary Goppa codes, so we will restrict ourselves to this subclass.

Definition 2.1.1. Let F2m denote the finite field of order 2m.

Definition 2.1.2. Let the polynomial g(Y ) =
∑t

i=0 giY
i ∈ F2m [Y ] be monic and irre-

ducible over F2m [Y ], and let m, t be positive integers. Then g(Y ) is called a Goppa
polynomial (for an irreducible binary Goppa code).

Then an irreducible binary Goppa code is defined as C(g(Y ),Γ) = {~c ∈ Fn2 |S~c(Y ) :=∑n−1
i=0

ci
Y−αi

= 0 mod g(Y )}, where n ≤ 2m, S~c(Y ) is the syndrome of ~c, Γ = (αi|i =
0, . . . , n−1), the support of the code, where the αi are pairwise distinct elements of F2m,
and ci are the entries of the vector ~c.

The code defined in such way has length n, dimension k ≥ n−mt and can correct up
to t errors. In the following, however, we only consider the case k = n−mt.

As for any linear error correcting code, for a Goppa code there exists a generator
matrix G ∈ Fn×k2 and a parity check matrix H ∈ Fmt×n2 [33]. Given these matrices, a
message ~m ∈ Fk2 can be encoded into a codeword ~c of the code by computing ~c = ~mG,
and the syndrome ~s ∈ Fmt2 of a (potentially distorted) codeword can be computed as
~s = ~cHT . Here, we do not give the formulas for the computation of these matrices as
they are of no importance for the understanding of the attack developed in this work.
The interested reader, however, is referred to [33].

The error correction is performed with the Patterson Algorithm [34] given in Algorithm
1. In Step 1 of this algorithm, the syndrome vector is computed by multiplying the
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2. Preliminaries

potentially distorted code word by the parity check matrix, and then turned into the
syndrome polynomial S(Y ) by interpreting it as an Ft2m element and multiplying it with
the vector of powers of Y . The Patterson Algorithm, furthermore, uses an algorithm
for finding roots in polynomials over F2m (root find()), and the Extended Euclidean
Algorithm (EEA) for polynomials with a break condition based on the degree of the
remainder, Algorithm 9, given later in this work, when its details become relevant.
Please note that all polynomials appearing in the algorithms have coefficients in F2m .

The root finding can be implemented in a number of different ways, as we will see in
Section 3.3.2. One important property of the error locator polynomial computed in the
course of the Patterson Algorithm given that for w, the Hamming weight of the error
vector ~e, it holds that w ≤ t, is

σ(Y ) =
∏
j∈E

(Y − αj) =
w∑
i=0

σiY
i, (2.1)

where E = {E1, E2, . . . Ew} is the set of those indexes in the error vector ~e having value
one.

2.2. The McEliece PKC

In this section, we give a brief overview of the McEliece PKC. The McEliece secret key
consists of the Goppa polynomial g(Y ) of degree t and the support Γ = (α0, α1, . . . , αn−1);
together, they define the secret code C. The public key is given by the public n×k gener-
ator matrix Gp = TG over F2, where G is a generator matrix of the secret code C and T
is a non-singular k× k matrix over F2, the purpose of which is to bring Gp into reduced
row echelon form, i.e. Gp = [I|G2], which results in a more compact public key [14]. The
encryption operation allows messages ~m ∈ Fk2. A random vector ~e ∈ Fn2 with Hamming
weight wt (~e) = t has to be created. Then the ciphertext is computed as ~z = ~mGp + ~e.

The decryption is given in Algorithm 2. It makes use of the error correction algorithm,
given by the Patterson Algorithm [34], shown in Algorithm 1. Note that the parity
check matrix H employed here is not an essential part of the private key but rather a
precomputed value.

Neither the McEliece nor the Niederreiter scheme is secure against adaptive chosen
ciphertext attacks [35, 36]. Thus, a CCA2 conversion has to be applied; suggestions can
be found in [36].

2.3. The Niederreiter PKC

In the Niederreiter PKC [12], the public key consists of the public parity check matrix

Hp = THs, where Hs is the parity check matrix of the private code and Hp ∈ F(n−k)×n
2 ,

and T is chosen equivalently to its counterpart in the McEliece scheme. Furthermore,
as in the McEliece scheme, Hp can be put in systematic form. Then, the public key will
be of the same size as for the McEliece cryptosystem. The Niederreiter encryption is
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2.3. The Niederreiter PKC

Algorithm 1 The McEliece error correction with the Patterson Algorithm
(err corr(~z, g(Y ),Γ))

Input: the distorted code word ~z ∈ Fn2 , the secret Goppa polynomial g(Y ) and secret
support Γ = (α0, α1, . . . , αn−1)

Output: the error vector ~e ∈ Fn2
1: S(Y )← ~zH>

(
Y t−1, · · · , Y, 1

)>
2: U(Y )← S−1(Y )
3: τ(Y )←

√
U(Y ) + Y mod g(Y )

4: (a(Y ), b(Y ))← EEA
(
g(Y ), τ(Y ), b t2c

)
5: σ(Y )← a2(Y ) + Y b2(Y )
6: E = {E0, . . . , Et−1} ← rootfind(σ(Y )) // if αi is a root, then E contains i
7: ~e← ~v ∈ Fn2 with vi = 1 if and only if i ∈ E
8: return ~e

Algorithm 2 The McEliece Decryption Operation

Input: the McEliece private key g(Y ), Γ and the ciphertext ~z ∈ Fn2
Output: the message ~m ∈ Fk2

1: ~e← err corr(~z, g(Y ),Γ)
2: ~m′ ← ~z + ~e
3: ~m←the first k bits of ~m′

4: return ~m

depicted in Algorithm 3. The message is encoded into an error vector of weight t and the
ciphertext is the corresponding syndrome, which can only be decoded by the holder of
the private key. The encoding of the message is done with so-called constant-weight-word
encoding, for instance as given in [37].

Algorithm 3 The Niederreiter Encryption Operation

Input: the Niederreiter public key H ∈ F(n−k)×n
2 and the message m

Output: the ciphertext z ∈ Fn−k2

1: encode the message m into e ∈ Fn2 , where wt (e) = t, using an appropriate algorithm
(constant-weight-word encoding)

2: z ← eHT

9



2. Preliminaries

Algorithm 4 The Niederreiter decryption Operation

Input: the Niederreiter private key T , Γ, g(Y ) and the ciphertext ~z ∈ Fn−k2m

Output: the message m
1: ~z′ ← T−1~z
2: ~e← err corr(z̃′, g(Y),Γ)
3: decode ~e to ~m using an appropriate algorithm (constant-weight-word decoding)
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3. Optimization for Resource-constrained
Devices

In this chapter, we give contributions for the implementation of code-based PKCs on
resource-constrained devices. The constraint that poses the greatest challenges to the
realization of these schemes is that of memory. This is because the huge code-based
public keys exceed the RAM size of embedded devices such as smart cards, and, further-
more, their storage on non-volatile memory is costly and inefficient. A solution to this
problem that removes the need for the storage of public keys on the memory-constrained
device in a public key infrastructure scenario altogether is given in Section 3.1.

Section 3.2 addresses the corresponding problem of the private key size, which poses a
storage problem on memory-constrained devices. Implementations presented in previous
works make use of the parity check matrix, which is not an essential part of the private
key, but allows for fast decryption. However, the large size of this matrix poses a big
cost problem. Also, many low cost microcontrollers would not even be able to store
this matrix alone in their non-volatile memory for reasonable security parameters of the
scheme. Accordingly, we present a contribution that demonstrates that contrary to this
usual implementation choice, it is possible to greatly reduce the McElice private key size
by omitting the parity check matrix and still achieve an acceptable running time of the
decryption.

The third contribution, given in Section 3.3, addresses a running time improvement
of the decryption operation of code-based PKCs, which, though in principle this perfor-
mance aspect is not a problem of these schemes, is relevant on computationally weak
platforms and useful for throughput maximization on servers. The running time im-
provement is achieved by determination of the most efficient algorithms for the generally
most time consuming computational task during the code-based decryption operation:
the finding of the roots of the error locator polynomial.

Finally, based on these results and those of other recent publications, in Section 3.4,
we compare the efficiency of the McEliece and Niederreiter PKCs.

3.1. On-Line public Operation for Code-based Schemes

Since the large public key size is the major drawback of code-based schemes, we inves-
tigate how the key size affects the efficiency of the encryption operation, or the public
operation in general, on embedded devices [8]. To this end, we first review some basics
about public key infrastructures (PKI). Afterwards, we give the proposal for the real-
ization of the public operation and present an example implementation on an embedded
device.
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3.1.1. The Storage Problem on Memory Constrained Devices

In order to illustrate the severity of the storage problem of code-based public keys on
memory-constrained devices, we analyse the situation for smart cards, since these plat-
forms are of utmost relevance for the adoption of a cryptosystem in a high security
context. Typically, smart cards have less than 20 KB of RAM, while the available
amount of non-volatile memory (NVM), e.g. flash-memory, can be as large as 512 KB
[38, 39]. If a public key of a communication partner shall be temporarily stored on the
device for the purpose of performing e.g. an encryption, it would have to be stored in
the NVM since it exceeds the size of the RAM many times over. Specifically, the public
keys will be at least 100 KB large for reasonable security parameters; for instance, this
is the size resulting from the parameters for a security level of 102 bits given later in
Table 3.1. The works [16, 4, 15] all describe implementations of code-based encryption
schemes on embedded devices, where the public key is stored in the device’s NVM. The
drawbacks of storing such an amount of data in the device’s NVM are first of all the
cost of keeping such a large amount of memory available for this purpose but also the
much slower writing speed compared to RAM access and the limited number of total
write cycles in the memory module’s lifetime. In order to circumvent these problems, we
show in the following that the public operations can be executed by only storing very
small parts of the public keys at any given time during the operation. This was already
addressed in [17]. However, our approach also considers that these operations will mostly
be carried out in a public key infrastructure context, which implies the verification of
user public key certificates against issuer certificates. This is explained in some more
detail in the next section.

3.1.2. Public Key Infrastructures

In a public key infrastructure (PKI), the trustworthiness of a public key is always verified
against a trust anchor. From the trust anchor, which is usually a certification author-
ity (CA) certificate, to the user certificate, there is a certificate chain involved. The
trustworthiness of a certificate lower in the chain is guaranteed by its authentic digital
signature created by the respective issuer, verifiable via the corresponding public key
contained in the issuer certificate.

For the case of public key encryption, it means that a user A’s public key intended for
encryption is contained in the user certificate. A user B willing to encrypt a message
for A thus goes through the following steps:

1. retrieve A’s public key encryption certificate Enc-Cert A (for example by accessing
a database or asking A directly)

2. verify the authenticity of Enc-Cert A by checking the signature on the certificate
against the trust anchor (CA certificate) – in case of deeper CA hierarchies the
whole certificate chain must be verified

3. encrypt the secret message using Enc-Cert A and send it to A
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For simplicity, in the following, we restrict ourselves to the case where the encryption
certificate is directly signed by the trust anchor.

Since in this work we will address problems and solutions for embedded devices such as
smart cards, we wish to point out why it is necessary to be able to carry out not only the
private operations of a public key scheme (i.e. decryption or signature generation) but
also the public operations on such devices. The reason is that devices such as smart cards
are more and more used as standalone devices, which, for instance, reveal certain files
only to parties which properly authenticate to them. This application context, which
is found especially in electronic travel documents and electronic health cards, makes
it necessary for smart cards to be able to carry out encryption as well as decryption
operations.

In a naive approach, the public operation, which we here assume to be an encryption
operation, would be realized by first retrieving the public key (embedded into a public
key certificate containing also a signature) of the communication partner, storing it on
the device, computing the hash value of the certificate’s to-be-signed (TBS) data (which
includes the code-based public key), verifying the signature, and finally encrypting the
designated message using the certificate’s public key. Consequently, in the following sec-
tion, we explain how to implement the public operations of code-based schemes without
storing full public keys on the device.

3.1.3. Description of the On-line Public Operation

The on-line public operation solves the following problem: an embedded device holding
a CA certificate as trust anchor is supposed to encrypt a message for another party,
which owns a public key encryption certificate containing a code-based public key. This
encryption certificate is signed by the CA and accordingly must be verified against the
CA certificate by the device. If the verification succeeds, the message shall be encrypted
using the encryption certificate and be sent to the other party. This shall be done without
storing the full encryption certificate, because of the problems explained in Section 3.1.1.

In our application scenario, we make the following assumptions:

1. We assume the usage of X.509 certificates [40]. Such a certificate consists of the
sequence of the TBS data, followed by a field containing information about the
signature algorithm and finally the signature. The signature ensures the authen-
ticity of the TBS data, and is calculated based on their hash value, using a hash
algorithm as specified in the preceding information field. Please note that the sig-
nature algorithm used to sign the user certificate needs not to be code-based (in
which case the trust anchor certificate would contain a large code-based key itself).
Instead, a hash based signature scheme [41] could be used. These schemes are also
considered quantum computer resistant and feature extremely small public keys.
Note, however, that the assumption of X.509 certificates is not a necessary precon-
dition for our approach. We use this choice merely to be able to give a concrete
description of the procedure. Any other solution which includes signed public keys
can be covered by the approach.
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2. We assume the usage of a hash function that allows the processing of the mes-
sage efficiently in an on-line manner. This means that the memory necessary at
any point during the hash computation should be small. This is a reasonable as-
sumption, because all practically relevant hash functions must be designed to have
this property. In the following description, we choose algorithms from the SHA-2
family, which operate on blocks of a maximal size of 128 bytes.

3. The transmission of the certificate occurs byte-wise, this means that every com-
pletely transmitted byte becomes immediately available to the software running on
the smart card. However, an alternative condition where only portions of a number
bytes become available to the software, does not change the scheme significantly.
This is because, through buffering, in the second case the complete transmission
is only delayed by a small constant.

4. As stated in Section 3.1.2, in our example we only use a single CA level. This
could be easily generalized to certificate chains of arbitrary length. In this case,
the device needs the whole chain of these CA certificates up to the trust anchor
during the process. These additional certificates could for instance be fed into the
device after the matrix multiplication.

The solution we propose is depicted in Figure 3.1. It works as follows:

1. The starting point is that the device wants to encrypt some message ~m, which
was generated on the device, with the McEliece public key of a communication
partner. As explained in Section 2.2, the first part of the McEliece encryption is
the multiplication of the message vector ~m by the public key matrix G.

2. Then, the X.509 certificate is input into the encryption device. The certificate
starts with the TBS data, and while this data is received, the device computes the
hash value of the TBS data and stores the relevant data from the certificate.

3. At the point where the code-based public key begins inside the TBS data, the
device starts to carry out the matrix-vector multiplication row-wise:

rj =
∑
i

Gijmi.

Note that the multiplication in F2 (logical AND) as well as the summation (logical
XOR) can be efficiently carried out machine-word-wise.

4. After having received all TBS data, the device the holds matrix-vector product ~r
and the hash value of the TBS data. Once it has also received the signature, it
uses the TBS hash value and the stored CA certificate to verify the authenticity of
the encryption certificate. If the verification succeeds, it completes the encryption
process, which for example, in the case of McEliece, encompasses the creation and
addition of the error vector, and finally outputs the ciphertext. If the verification
fails, the device deletes the matrix-vector product and outputs an error message.
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Figure 3.1.: Illustration of the on-line public operation for code-based cryptosytems.

Because only very small parts of the matrix are stored at any point in time, we call
this approach “on-line public operation”. The result of this operation is exactly the same
as that of the naive approach with the storage of the matrix presented in the previous
section.

3.1.4. Transmission Rates

In this section, we give an overview of transmission rates available for embedded systems,
especially smart card microcontrollers. For instance, an SLE66CLX360PE [39] smart
card platform from Infineon Technologies AG features an ISO/IEC 14443 compliant
contactless interface that can transmit up to 106 KB/s. This allows the transmission
of a McEliece public key of size 100 KB, which corresponds to the code parameters for
about 100-bit security given in Table 3.4, in about 1s, which can be considered at least
acceptable for certain applications.

In the future, contactless transmission rates may be about 837.500 bytes/s [42], i.e.
about 8 times higher than the rate considered above1. In the following, we will show
that it is still feasible to sustain such a high transmission rate at typical smart card CPU
speeds of about 30 MHz, if adequate hardware support is available on the device. Note
that, in this case, there are still about 35 CPU cycles available between the receipt of
two bytes.

1In the referenced work, this transmission rate is actually only achieved in the direction from the card to
the reader. However, we want to use it merely as an orientation for the transmission rates achievable
in the near future.
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3.1.5. Example Implementation

We implemented the proposed approach of the on-line public operation in the C program-
ming language on an ATUC3A1512 32-bit microcontroller from Atmel’s AVR32 family.
We chose an embedded 32-bit platform basically because SHA-256, which we chose as
the hash algorithm in the example implementation, is designed for 32-bit platforms.
There also exist 32-bit smart card controllers [43], thus our evaluations are significant
for this type of platform.

The personal computer (PC), acting as the client device in this setup, communicates
with the AVR32 over a serial line. For the implementation of the serial communication,
on the AVR32, we used the API for the device’s Universal Asynchronous Receiver Trans-
mitter (UART), provided by Atmel. On the side of the personal computer, we used the
API to the serial port of the Linux operating system. The PC can send commands to
the AVR32, which are formed by a six-byte header and optional payload data, the length
of which is encoded in the last four header bytes. The first header byte is zero for all
commands, and the second byte determines one of the following commands:

• set the vector to multiply

• carry out the on-line multiplication (starts an interactive protocol for the matrix
transmission described below)

• get the multiplication result from the AVR32

• get the hash result from the AVR32

The AVR32 responds to these commands by sending a two-byte status code and optional
data payload preceding the status code, or in the case of the on-line multiplication
command, by starting an interactive protocol.

This protocol is depicted in Figure 3.2. As a precondition, the vector to multiply
has to be set in the device through the corresponding command. After receiving the
on-line multiplication command (which does not carry payload data), the AVR32 sets
up two buffers B1 and B2, which are of an equal predefined size. It sends a two-byte
acknowledgement (ACK) code to the PC as the answer to the command. Then, the
PC sends the first matrix part, which is of equal size as the buffers B1 and B2. The
receipt of a single byte over the UART interface of the AVR32 triggers an interrupt
which is serviced by an Interrupt Service Routine (ISR), which writes the byte to the
next free position in B1. After the first block has been received completely, the AVR32
sends another ACK code to the PC, who in turn reacts by sending the next part. At this
point, the AVR32 exchanges the role of the buffers B1 and B2: the data are now received
to B2 (which did not play any role while receiving the first part), and B1, containing the
first matrix part, is fed into the SHA-256 computation and the matrix multiplication.
Both, the hashing and the matrix multiplication are implemented as objects, which can
be updated by calling routines that take arbitrary amounts of data as an argument.

For hash functions, this is the standard implementation technique. Because demanded
by our approach, we adopted this technique for the matrix multiplication. In our imple-
mentation, the matrix-vector multiplication is carried out column-wise. The advantages

16



3.1. On-Line public Operation for Code-based Schemes

and disadvantages of this approach in contrast to row-wise multiplication are discussed
in Section 3.1.9. The multiplication object knows the number of rows and columns of
the matrix and has the source vector set. As the matrix data is fed column-wise, it
keeps track of the current row and column position. It processes the current column by
carrying out the logical AND (multiplication in F2) between the matrix column and the
vector 32-bit word-wise, and computes the XOR (addition in F2) with a 32-bit accumu-
lator. When a column is finished, the parity (i.e. sum of all the word’s bits in F2) of the
accumulator is written to the corresponding result bit.

The hash implementation is based on the open source implementation [44]. The
C source code allows for the complete unrolling of the SHA-256 compression function
through a macro definition. Activating loop unrolling resulted in a performance gain of
1.6 for the hash function computation. All the performance data given later are based
on this implementation choice.

3.1.6. Non-interactive Version of the Protocol

It turned out that the interactive protocol incurs significant delay in the communication,
which most probably results from the fact that our PC program is running in user
space and, thus, sending and receiving data via the serial interface is delayed. If the
protocol were implemented in a card terminal, which could be the case in a real world
implementation of the on-line multiplication, such issues would not arise. To show the
efficiency of the approach, we modified the protocol depicted in Figure 3.2: the AVR32
does not send any ACK answers beyond the very first one. Consequently, the matrix data
are sent as a continuous stream after the AVR32 has sent the initial ACK. In this way,
the protocol looses the feature that it works independently of the ratio of transmission
speed and computation speed: in this non-interactive setting, it must be guaranteed
that the hash and the multiplication computation of the processed buffer have finished
before the receive buffer has been completely filled. With this approach, the performance
could be improved by a factor of roughly 1.3 compared to the interactive variant of the
protocol. The concrete results are discussed shortly.

3.1.7. Simulation of higher Transmission Rates

On the chosen AVR32 platform, the maximal transmission speed is given by a baud
rate of 460,800. In the RS232 transmission format, each data byte is encoded in 10
bits, yielding a net transmission rate of 46,080 bytes/s. In order to demonstrate the
computation speed that would be possible beyond this limitation, we implemented a
means of simulating higher transmission speeds. This is achieved by creating a matrix
whose rows have repetitive entries, i.e. the values of 8-bit chunks repeats r times. An
example of the beginning of a row for r = 4 would be

0x1D, 0x1D, 0x1D, 0x1D, 0xA3, 0xA3, 0xA3, 0xA3, 0x22, ...

In this setting, on the PC side, such a repetitive matrix is generated. When the matrix
is transmitted, however, each repeated element is sent only once. On the receiving side,
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the repetition value r is also known and each received byte is appended to the buffer
r times. In this way, we simulate a transmission rate Bsim = rBreal, where Breal is the
actual UART transmission rate.

3.1.8. Experimental Results

We performed measurements for the non-interactive version described in the previous
section on the AT32UC3A1 platform. Here, we used a matrix with 1000 rows and 800
columns, i.e. yielding a size of 100,000 bytes. This is approximately the size of McEliece
public keys with 100 bit security [4]. In all our measurements, the CPU speed of the
AVR32 was set to 33 MHz, since also today’s contactless smart card platforms run at
approximately this speed [38]. A receive buffer size of 1536 bytes was used.

The time for the complete on-line multiplication under these parameters is 279ms at a
simulated transmission rate Bsim = 368, 640 (using r = 8). This amounts to an effective
computational throughput of 92 cycles/byte for the SHA-256 hash computation and the
matrix multiplication.

We also determined the actual computational throughput on the platform for both
computational tasks: it is 4.2 cycles/byte for the matrix multiplication and 55.6 for the
hash computation; taken together, this amounts to 59.8 cycles/byte. Based on this, if
there were no other delays in the whole process, a transmission rate of 551,839 bytes/s
could be theoretically supported.

Furthermore, we measured the random error vector creation as the second part of the
encryption operation for code parameters n = 2048 and t = 50 to be less than 4 ms
at a CPU speed of 33MHz, the addition (XOR) of the error vector to the intermediate
vector is certainly even much less complex, and thus completely negligible for the timings
considered here.

The transmission speed of 386,640 bytes/s, which can be sustained in our test setup, is
approximately half of that of the research implementation presented in [42], already men-
tioned in Section 3.1.4. Thus, our results show that even without dedicated hardware,
today’s embedded platforms already enable computation speeds for the hash calculation
and the matrix multiplication not too far from the associated transmission rates that
can be expected to be supported by contactless devices in the near future. This makes
it feasible that, with adequate hardware support, the full 837.500 Byte/s rate given in
[42] can be supported by the throughput of the computational tasks.

3.1.9. Column-wise vs. Row-wise Matrix-Vector Multiplication

The row-wise computation of the matrix-vector multiplication is an alternative to the
column-wise approach. In this case, the computation of the result is according to
b =

∑
iGiai, where Gi is the vector represented by the i-th row of G. This means

that a row Gi is added to the result if the corresponding bit ai is one, otherwise nothing
has to be done. In the normal case, where the whole matrix is available instantly, this
approach has a significant advantage over the column-wise approach since, on average,
half of the vector a’s bits have value zero. But in the case of the on-line public opera-

18



3.1. On-Line public Operation for Code-based Schemes

Figure 3.2.: Schematic overview of the interrupt based implementation of the on-line
multiplication.

19



3. Optimization for Resource-constrained Devices

tion, this advantage disappears, since the matrix-vector multiplication’s running time is
determined by the transmission time alone (under the assumption of sufficient compu-
tational power of the device as analysed in Section 3.1.4). The row-wise approach would
only have an advantage if the saved computational effort could be used to perform other
tasks, which can be assumed to be rather unlikely or at least of minor relevance in the
context of embedded devices such as smart cards.

On the other hand, the disadvantage of the row-wise multiplication lies in its potential
side-channel vulnerability. Specifically, if an attacker is able to find out whether the
currently transmitted row is added or ignored, for instance by analyzing the power trace
[22], he can deduce the value of the secret bit ai. Of course, countermeasures can be
implemented. A certain randomization could for instance be introduced by keeping a
number of received rows in a buffer and processing them in a randomized order. However,
whether the questionable computational advantage of this method is worth such efforts
must be decided in a concrete implementation scenario.

In any case, once the X.509 key format for a code-based scheme is defined, the choice
for one of the two methods is taken. While it would still be possible, in that case, to
transmit the matrix in the other orientation, in order to carry out the multiplication,
the on-line hash computation only works if the correct orientation is used.

3.1.10. Code-based Signature Schemes

A number of code-based signature schemes have been proposed. In the following, we
will very briefly address two of these schemes with the goal of showing that the proposed
approach for the on-line public operation is applicable to both of them.

In [31], the McEliece scheme is inverted, in the sense that the signer proves his ability
to decode a binary vector related to the message using a certain code. Thus, the signature
verification basically consists of a matrix-vector multiplication, like for the encryption
schemes described in Section 3.1.3. For security considerations concerning this scheme,
please refer to [45, 46].

A signature scheme involving two binary matrices as the public key is presented in
[47]. In the verification operation, both matrices have to be multiplied by a vector. Thus,
the on-line public operation can be carried out by transmitting them one after another.
Note, however, that the originally proposed parameters for this scheme are insecure [48].

3.2. McEliece Decryption without the Parity Check Matrix

The essential private key of the McEliece PKC is given by the Goppa Polynomial g(Y )
and the support Γ. However, for fast syndrome computation, all previous works about
implementations of the scheme feature the parity check matrix as part of the private key
[4, 16, 17, 20]. Since the size of the parity check matrix is in the same order of magnitude
as that of the public key (see for instance Table 3.1), this implementation choice poses a
great problem for memory-constrained devices. Consequently, in this section, we devise
an optimized algorithm for the syndrome computation without the parity check matrix,

20



3.2. McEliece Decryption without the Parity Check Matrix

and compare its performance with the syndrome computation based on the availability
of this matrix [8].

3.2.1. Optimized Algorithm for the Syndrome Computation without the
Parity Check Matrix

In this section, we provide an algorithm with optimized running time for the syndrome
computation without the parity check matrix. It is achieved by tailoring the EEA to the
specific case of the syndrome computation.

In the McEliece scheme, the first step of the decryption operation is, according to
Algorithm 2, the computation of the syndrome polynomial S(Y ) as

S(Y ) ≡
n∑
i=1

ci
Y ⊕ αi

mod g(Y ), (3.1)

where g(Y ) is the Goppa Polynomial, ci is the i-th ciphertext bit and the αi is the i-th
support element.

From (3.1) we see that the syndrome computation without the parity check matrix
is, in principle, achieved by invoking the Extended Euclidean Algorithm (EEA) with
g(Y ) and Y ⊕ αi for all i ∈ {0, . . . , n − 1} as the initial remainders. Here, since g(Y )
is irreducible, the coefficient to Y ⊕ αi is (Y ⊕ αi)

−1 mod g(Y ). This coefficient is
considered the result of the EEA, in the following. Finally, the results of all these EEA
computations have to be summed up to yield the syndrome polynomial S(Y ). All these
EEA invocations execute in a single iteration. Accordingly, in an implementation of the
syndrome computation, a number of optimizations are possible. The resulting algorithm
is given in Algorithm 5. There, z[i] denotes the i-th ciphertext bit and Bj the coefficient
to Y j of B(Y ), etc. The complexity of the algorithm as a function of the ciphertext’s
Hamming weight w is

Csyndr(w) = 2wt(Cmult + Cadd) + wCinv.

Its average complexity (i.e. the complexity for a ciphertext with Hamming weight n/2,
which is the expectation value for a random ciphertext), expressed in the terms of addi-
tions, multiplication and inversions in F2m , is

Csyndr = nt(Cmult + Cadd) +
n

2
Cinv.

This value is derived as follows: Csyndr is obviously the cost of the computation for
ciphertexts with the mean Hamming weight n/2. It is also the average cost for equally
distributed random ciphertexts. This can be seen from a simple symmetry argument
making use of the linearity of C(w): For each Hamming weight w1 = (n/2) − x there
exists a Hamming weight w2 = (n/2)+x with the same probability of occurence p(n/2)−x.
Assuming even n, we find for the expectation value of Csyndr(w):

Csyndr = p(n/2)C(n/2) + p(n/2)−1C((n/2) + 1) + p(n/2)−1C((n/2)− 1)︸ ︷︷ ︸
2p(n/2)−1C(n/2)

+ . . . = C(n/2),
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n = 2048, t = 50 n = 2960, t = 56
102 bit security 122 bit security

cycles t @ 33 MHz cycles t @ 33 MHz

A
decryption 2.00 · 106 61 ms 3.12 · 106 95 ms
syndrome computation 0.26 · 106 8 ms 0.39 · 106 12 ms
private key size 155,640 byte 274,192 byte

B
decryption 4.42 · 106 134 ms 7.39 · 106 224 ms
syndrome computation 2.65 · 106 80 ms 4, 71 · 106 143 ms
private key size 14,840 byte 25,552 byte

Table 3.1.: Comparison of private key sizes, cycle counts and corresponding timings
taken for the McEliece decryption operation and its suboperation, the syn-
drome computation, with (A) and without (B) the parity check matrix.

where the probabilities sum up to 1. Assuming odd n instead, the Hamming weights to
consider are (n/2)± 1

2 , (n/2)± 11
2 etc., which changes nothing about the result.

3.2.2. Implementation and Performance Results

We implemented this algorithm in a McEliece PKC implementation based on the open
source implementation [20] presented in [14], using the Berlekamp Trace Algorithm for
the root-finding. Table 3.1 shows the timing results measured on an Atmel AT32 AP7000
CPU, a CPU similar to the AT32UC3A1. The CPU runs at 150 MHz, but we give the
according running time for the typical smart card CPU speed of 33 MHz, which was
already employed in Section 3.1.5. Each cycle count was obtained by carrying out the
operation ten times and taking the mean of the results. The smaller parameter set
features 102 bits of security [4], the larger one will be introduced in Section 3.3.3.

The respective private key sizes without the parity check matrix given in Table 3.1
are formed by the Goppa Polynomial g(Y ), the support Γ, a matrix for computing the
square root modulo g(Y ), which is needed to speed up the decryption, and the logarithm
and anti-logarithm tables for F2m , each of size dlog2ne elements, i.e. a total of 8,192 resp.
16,384 bytes for either parameter set (each element occupies 2 bytes). These latter tables
need not necessarily be stored in the key; instead, they can be created in RAM before the
decryption operation, if allowed by the memory constraints of the given platform. From
this example implementation, which does not use any hardware support for the F2m

operations or DSP instructions, we see that the decryption time approximately doubles
when the parity check matrix is not stored as part of the key, but due to the general speed
advantage of the McEliece scheme over RSA or Elliptic curve based schemes [14, 16],
these timings are still highly competitive.
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Algorithm 5 The Syndrome computation without parity check matrix

Input: the ciphertext ~z ∈ Fn2 , and the Goppa Polynomial g(Y ) ∈ F2m[Y ] of degree t
Output: the syndrome polynomial S(Y ) ∈ F2m[Y ] of degree ≤ t− 1
S(Y )← 0
for i← 0 up to n− 1 do

if ~z[i] = 1 then
B(Y )← 0
b← gt
for j ← t− 1 down to 0 do
Bj ← b
b← b · αi ⊕ gj

end for
f ← b−1

for j ← 0 up to deg (B(Y )) do
Sj ← Sj ⊕ f ·Bj

end for
end if

end for

3.3. Efficient Root-Finding during the Decryption

Though on personal computers the speed of the operations of code-based PKCs is known
to be the strong side of these schemes, it is important to know their performance in pure
software implementations on computationally weak platforms, in order to determine
the extent to which hardware support is necessary on devices such as smart cards.
Furthermore, the minimization of an algorithm’s running time is always useful when it
comes to keeping small the computational load on server systems.

From this point of view, the root-finding of the error locator polynomial σ(Y ) in code-
based decryption deserves special attention because, as addressed already in previous
work [15, 16], it is in general the most time-consuming part of the decoding algorithm.
Furthermore, it is the only computational task during the decryption for which different
algorithms have been proposed. Thus, in this section, after giving some preliminaries
about software implementations of F2m operations, we present four algorithmic variants
for this computational task, along with two new hybrid variants. Finally, we give a
performance comparison in terms of running times on a personal computer platform [7].

3.3.1. Remarks about the F2m Operations

Before we start with the descriptions of the root-finding algorithms, we want to point
out some details concerning the costs of the basic F2m operations that are involved, i.e.
addition and multiplication.

While Cgf add, the cost of an addition in F2m is given by a simple XOR operation,
the multiplication in F2m is much more complex and has a number of variants. An
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efficient software implementation of finite field arithmetics with characteristic 2 and
small extension degrees is realized by the use of one lookup table for the logarithm of
each non-zero element to the base of some primitive element, and the corresponding
anti-logarithm table.

The standard multiplication, as it is for instance implemented by the “C” macro
gf_mul() in HyMES [20], which is used throughout their code, takes arguments in
the normal representation and outputs the result in normal representation. This type
of multiplication, we refer to as mul nnn. Its cost is two conditional branches to check
whether the arguments are zero, three table lookups, one arithmetic ADD, and reduction
of the result modulo the fields multiplicative order, which in turn consists of several
instructions. In the general case, this multiplication is needed, as in most places in the
algorithms involved in the syndrome decoding, multiplication and addition in F2m are
intermixed, and moreover, operands having value zero cannot be excluded.

However, when operands are known to be non-zero, and multiplications are carried
out subsequently, other forms of the multiplication that have results ( a in the algorithm
description mul abc ) or operands (b and c ) in the logarithmic representation, are more
efficient:

• mul lll consists only of one arithmetic ADD (a certain number of these multi-
plications can be carried out before a reduction modulo the multiplicative order
becomes necessary to avoid overflowing the register)

• mul nln saves one conditional branch and one table lookup compared with mul nnn

This rough review of the finite field arithmetic implementations in software shows that
speaking of the cost of multiplication in F2m is not sufficient to describe actual compu-
tational costs, because there exist drastic differences in the cost with respect to how the
multiplication is embedded into the algorithm.

3.3.2. Variants of Root Finding

In the following subsections, we give brief descriptions of the root-finding algorithm
variants analysed in this work.

3.3.2.1. Exhaustive Evaluation with and without Division

The most straightforward implementation of the root-finding is to simply evaluate the
polynomial σ(Y ) for each element of the code.

The complexity of this algorithm is given as

Ceval−rf = (n− 1)t(Cgf add + Cmul nln)

Remember that n is the code length and t is the error correcting capability. Taking a
look at the Horner Scheme evaluation used here, we see that when evaluating σ(Y ), we
can transform x 6= 0 to the logarithmic representation, avoiding some unnecessary table
lookups, i.e. making use of mul nln .
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The algorithm can be sped up by dividing the polynomial σ(Y ) by each root found,
resulting in Algorithm 6. Such a division has basically the same complexity as the
evaluation of the polynomial for one single element of F2m . In the following, we will call
these two variants eval-rf and eval-div-rf.

Algorithm 6 The algorithm eval-div-rf for finding the roots of a polynomial over F2m

Input: the polynomial σ(Y ) over F2m

Output: the set E , where γi is a root of σ(Y ) if and only if i ∈ E
1: E = ∅
2: for i = 0 up to i = n− 1 do
3: if σ(γi) = 0 then
4: E ← E ∪ {i}
5: σ(Y )← σ(Y )/(Y − γi)
6: end if
7: end for
8: return E

3.3.2.2. Berlekamp Trace Algorithm

Another root-finding variant is the Berlekamp Trace Algorithm [49]. We adopted the
implementation of this algorithm found in the HyMES open source implementation of
the McEliece scheme [14, 20] for purposes of comparison with the other variants. For
completeness, we provide the description of this algorithm as originally given in [14] in
Algorithm 7. The initial call to this recursive algorithm is given as BTA(σ(Y ), 1), which
we will refer to as BTA-rf for the remainder of this work. The trace function is defined
as Tr(Y ) = Y +Y 2 +Y 22 + . . .+Y 2m−1

, and {β1, β2, . . . , βm} is a standard basis of F2m .
The HyMES implementation actually performs precomputations of Tr(βiY ) mod σ(Y )

with i ∈ {0, . . . ,m− 1}, as described in [50]. In that work, the complexity of the BTA is

Algorithm 7 The recursive Berlekamp Trace Algorithm BTA(σ(Y ), i).

Input: the error locator polynomial σ(Y )
Output: the set of roots of σ(Y )

1: if deg (σ(Y ) ≤ 1) then
2: return root of σ(Y )
3: end if
4: σ0(Y )← gcd(σ(Y ),Tr(βiY ))
5: σ1(Y )← gcd(σ(Y ), 1 + Tr(βiY ))
6: return BTA(σ0(Y ), i+ 1)∪BTA(σ1(Y ), i+ 1)

given as O(mt2). In order to make a fair comparison of the various root-finding variants
in terms of performance, we optimized the existing implementation of the algorithm by
applying the more cost-efficient versions of multiplication in F2m as discussed in Section
3.3.1, where possible. As a result, the running time was reduced by about 10%.
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Furthermore, BTA-rf can be sped up by using specific root-finding algorithms for
polynomials of low degree [50]. We only implemented the variant where the roots of
polynomials of degree two are determined through the use of a lookup table of size 2n
bytes (supporting m = 15 at most), presented in the referenced work. Then, in the
recursion, this algorithm is invoked instead of Algorithm 7 whenever the degree of σ(Y )
is two. In the following, we refer to this algorithm by BTZ2-rf.

3.3.2.3. Root Finding with linearised Polynomials

In this section, we explain a root-finding method based on decomposing a polynomial in
F2m [Y ] into linearised polynomials [51]. The idea of this approach is based on the fact
that the exhaustive evaluation of a linearised polynomial can be done with much less
computational cost than for general polynomials.

Definition 3.3.1. A polynomial L(Y ) over F2m is called a linearised polynomial if
L(Y ) =

∑
i LiY

2i, where Li ∈ F2m.

As shown in [51], an affine polynomial of the form A(Y ) = L(Y ) + β with β ∈ F2m

can be evaluated for the value Y = xi based on the evaluation result for Y = xi−1 as
stated in the following theorem:

Theorem 3.3.1. Let xi ∈ F2m and A(x) an affine polynomial. Then

A(xi) = A(xi−1) + L(∆i), ∆i = xi − xi−1. (3.2)

Proof. Let {α0, α1, . . . , αm−1} be a standard basis of F2m , i.e. xi =
∑m−1

k=0 xi,kα
k with

xi,k ∈ F2. The notation for an unsubscripted x is adopted naturally.
First, we prove that L(y) =

∑m−1
k=0 ykL(αk):

L(y) =
∑
j

Ljy
2j =

∑
j

Lj

(
m−1∑
k=0

ykα
k

)2j

=
∑
j

Lj

m−1∑
k=0

(ykα
k)2j

=
∑
j

Lj

m−1∑
k=0

ykα
k2j =

m−1∑
k=0

yk
∑
j

Lj(α
k)2j

=

m−1∑
k=0

ykL(αk).

Using this result, we prove that L(xi)− L(xi−1) = L(xi − xi−1) = L(∆i):

L(xi)− L(xi−1) =

m−1∑
k=0

xi,kL(αk)−
m−1∑
k=0

xi−1,kL(αk)

=

m−1∑
k=0

(xi,k − xi−1,k)L(αk) = L(xi − xi−1),
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Now the theorem is proven:

A(xi) = β + L(xi) = A(xi−1)− L(xi−1) + L(xi) = A(xi−1) + L(xi − xi−1).

In order to take advantage from this, we perform the evaluations of the polynomial in
Gray-code ordering, i.e. for all i we have that xi and xi+1 differ only in one single bit in
their binary string respresentation. Then, there are only m different values L(∆i) that
have to be precomputed.

To have a benefit in the evaluation of general polynomials, they have to be decomposed
in a way that as many affine polynomials as possible appear in the decomposition. Such
a generic decomposition of a polynomial f(Y ) =

∑t
i=0 fiY

i, also given in [51], is

f(Y ) = f3Y
3 +

d(t−4)/5e∑
i=0

Y 5iAi(Y ), (3.3)

where

Ai(Y ) = f5i +

3∑
j=0

f5i+2jY
2j . (3.4)

The evaluation of each Ai(xi) is done efficiently according to (3.2). To this end, the
exhaustive evaluation of (3.3), i.e. evaluation of the polynomial for all elements of F2m ,
is done with the xi being in Gray-Code ordering. Specifically, we use the Gray Code
generated by xi = (i >> 1) ⊕ i, where “>>” denotes logical right shift. The actual
computational cost for the root-finding with linearised polynomials includes the sum of
the precomputations, i.e. the computation of the Ai(Y ). This cost is given in [51], it is
however negligible for secure code parameters. The dominating cost is that of computing
f(Y ) for all n code elements:

Cdcmp−rf = (n− 1)(Cgf log + Csqu ll + 2Cmul lll + Cmul nll+

d(t+ 1)/5e (2Cgf add + Cmul lll + Cmul nln)),

where Cgf log refers to the cost of converting a F2m element from normal to logarithmic
representation and Csqu ll is the cost of squaring in the logarithmic representation.

3.3.2.4. New Hybrid Variants

We also implemented two new hybrid variants. We label the first dcmp-div-rf(a,b),
where a and b are parameters of the algorithm. It is given simply by restarting the
whole dcmp-rf everytime after, through divisions by found roots, the degree of σ(Y ) has
been reduced by at least 5a to 5k + 4 for some positive integer k. Furthermore, once in
this process deg (σ(Y )) = b is reached, no more divisions are performed, and standard
dcmp-rf is used henceforth.

A further variation of this is given through dcmp-div-BTZ2-rf(a,b). It is equal to dcmp-
div-rf(a,b) until deg (σ(Y )) = b. Then, when σ(Y ) has degree b, BTZ2-rf is invoked to
find the remaining roots.
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3.3.3. Performance of the Root-finding Variants

In this section, we give a comparison of the performance of the root-finding algorithms
given in Section 3.3.2.

The code was compiled with GCC version 4.5.2 with the optimization options

-finline-functions -O3 -fomit-frame-pointer -march=i686 -mtune=i686

and run on a Intel(R) Core(TM)2 Duo CPU U7600 CPU.

In the following, we give results for two parameter sets based on the propositions given
in [52] for 128 and 256 bit security, which are based on code parameter choices aiming
at the minimization of the public key size, which is known to be the most problematic
feature of code-based cryptosystems. The only deviation of our parameter choices is
the number of errors added during encryption: in [52], List Decoding [53], which allows
for the correction of more than t errors, is assumed during decryption. For the smaller
parameter set, they choose t+ 1 errors and for the larger t+ 2 errors. The reduction of
security of the smaller parameter set in our implementation using only t errors, however,
can easily be bounded by understanding that an attacker can get, from a ciphertext with
t+ 1 errors to t errors by guessing one error position correctly, the success probability of
which is (t+ 1)/n = 0.02. Accordingly, the security of the scheme with t errors cannot
be smaller than 128− log2(1/0.02) > 122 bits. A corresponding calculation for the larger
parameter set gives a lower bound of 244 bits.

It is noteworthy that these parameter sets, optimized for minimal public key size for a
given security level, use codes with n < 2m, and that this has different effects for our four
candidate algorithms. Both eval-rf and eval-div-rf are faster for n < 2m in contrast to
n = 2m, however, for the latter, the speedup is less than for the former, as in eval-div-rf
the roots found at the end of the support cause less effort. dcmp-rf also benefits from
n < 2m, since also then the support can be built from a Gray Code. BTA-rf , however,
has the same running time no matter whether n < 2m or n = 2m.

Tab. 3.2 gives the results for the mentioned parameters. We clearly see that BTZ2-rf
and dcmp-rf are almost equally fast and that dcmp-div-rf , the parameters of which were
experimentally optimized for the given code parameters, has even better performance.
For the smaller parameter set, dcmp-div-BTZ2-rf has a small edge on dcmp-div-rf , for
the larger code parameter set no parameters of dcmp-div-BTZ2-rf allowing an improve-
ment over dcmp-div-rf were found.

Besides the execution time, memory demands are certainly of great importance, at
least for the application on resource constrained platforms. In Section 5.1, the memory
consumption of the McEliece decryption on an embedded platform for the various root-
finding variants will be given.

However, it must be pointed out, that for parameter choices using large values of n
while trying to minimize t, BTA-rf clearly wins against dcmp-rf . In Tab. 3.3, we give
the root-finding running times for these two algorithms for some parameter sets taken
from the results given in [14]. Note that the security levels for all these parameter sets
are lower than 128 bit; furthermore, their concrete values given in [14] are deprecated
by [52]. The drawback of such a parameter choice with small t is a large public key size.
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parameters security level root-finding algorithm cycle count / 105 cycles

n = 2960, t = 56 122 bit

eval-rf 21.16
eval-div-rf 16.26

BTA-rf 8.89
BTZ2-rf 6.33
dcmp-rf 6.45

dcmp-div-rf(1,19) 5.42
dcmp-div-BTZ2-rf(1,19) 5.12

n = 6624, t = 115 244 bit

eval-rf 141.86
eval-div-rf 71.48

BTA-rf 32.59
BTZ2-rf 26.10
dcmp-rf 25.55

dcmp-div-rf(3,19) 18.38

Table 3.2.: Comparison of the average root-finding algorithm performance on an x86
Intel(R) Core(TM)2 Duo CPU U7600 for code parameters as suggested in
[52]. All given values are the average of 50 decryptions.

parameters root-finding algorithm running time / 105 cycles

n = 2048, t = 32
BTA-rf 3.16
dcmp-rf 3.21

n = 4096, t = 21
BTA-rf 1.47
dcmp-rf 5.34

n = 8192, t = 18
BTA-rf 1.28
dcmp-rf 10.10

Table 3.3.: Comparison of the root-finding algorithm performance on an x86 Intel In-
tel(R) Core(TM)2 Duo CPU U7600 for code parameters with large n and
small t.
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3.4. Comparison of the McEliece and Niederreiter PKCs in
Terms of Efficiency

In this section, we compare the McEliece and the Niederreiter scheme, where we consider
results from the previous sections as well as recent work by other authors.

3.4.1. Public Key Size and Encryption Speed

For public keys Gp ∈ Fn×k2 and Hp ∈ Fmt×n2 that are not brought to reduced row echelon
form, the Niederreiter public key is smaller, but for the usually much more reasonable
choice of the reduced public keys, both public keys are in Fmt×k2 .

The Niederreiter scheme also features smaller encryption timings. In the matrix-
vector multiplication, both the matrix and the vector have the same dimensions in both
schemes. But in the Niederreiter scheme, a vector of the low Hamming weight given by
t is employed, whereas that of the McEliece scheme has a Hamming weight of n/2 on
average [15], which is much larger than t for usual code-parameter choices. In the same
work, it is shown that the additional constant-weight-word encoding that is needed for
the encryption in the Niederreiter PKC has only a small impact on encryption time. In
that work, a speed advantage of factor 112 is claimed for the Niederreiter PKC over the
McEliece PKC.

3.4.2. Private Key Size and Decryption Speed

In case of the choice of a McEliece public key in reduced row echelon form, the private
key does not need to contain the scrambling matrix T because the message is reproduced
(though certainly distorted by the error vector) in the first k positions of the ciphertext.
For the Niederreiter system, an analogous approach is not possible. Thus, in terms of
memory efficiency, the McEliece PKC has the advantage that it allows for a much smaller
private key size than the Niederreiter PKC: if the parity check matrix is excluded from
the McEliece private key as discussed in Section 3.2, then this key is smaller than a
Niederreiter private key by exactly the size of the scrambling matrix T ∈ Fmt×mt2 .

In [15], the Niederreiter decryption uses a matrix T that is generated from a pseudo
random number generator (PRNG), reducing the memory demands of this matrix down
to only a small seed for the PRNG. However, the public key cannot then be chosen to
be in reduced row echelon form, which is a major efficiency drawback.

In [15], the decryption time of the Niederreiter PKC is about three times lower than
that of the McEliece PKC. The main reason for this is that in the Niederreiter de-
cryption, the syndrome computation does not have to be carried out. However, they
obviously compare both a Niederreiter and a McEliece implementation not using public
keys in reduced row echelon form, otherwise the speed advantage of the Niederreiter
PKC must be assumed to be lower: for the reduced public keys, in the McEliece PKC,
the multiplication by the scrambling matrix T does not have to be carried out at all;
thus, in this case the only speedup of the Niederreiter decryption stems from the fact
that it features a matrix multiplication T−1 ∈ Fmt×mt2 by vector in Fmt2 in contrast to
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n, t, wt (~e) security level plaintext size in bits ciphertext size in bits

McEliece Niederreiter McEliece Niederreiter

2048, 27, 27 80 1751 202 2048 (1.17) 297 (1.47)

2048, 50, 50 102 1498 333 2048 (1.37) 550 (1.65)

2960, 56, 57 128 2288 401 2960 (1.29) 672 (1.68)

6624, 115, 117 256 5129 842 6624 (1.29) 1495 (1.78)

Table 3.4.: Comparison of plaintext and ciphertext sizes of the McEliece and Niederreiter
scheme. wt (~e) denotes the number of errors used during encryption. In the
column with the ciphertext sizes, the message expansion, i.e the ratio of
ciphertext and plaintext size, is given in brackets.

H ∈ Fmt×n2 being multiplied by ~z ∈ Fn2 in the McEliece decryption. Thus the ratio of
the cost of the former multiplication to that of the latter is mt/n.

3.4.3. Message and Ciphertext Sizes

In the McEliece PKC, we have messages ~m ∈ Fk2; in the Niederreiter PKC, the message
size depends on the algorithm used for the constant-weight-word encoding. In Table
3.4, we give the message and ciphertext sizes of both cryptosystems for a number of
parameter sets taken from [15, 52, 4], where the two highest parameter sets assume list
decoding [53], and thus allow for the use of more than t errors during encryption. For the
determination of the Niederreiter plaintext size, the encoder used in [14] was assumed.
It yields a plaintext bit size of l ≥ blog2

(
n
t

)
c − 1.

We consider hybrid encryption, i.e. the encryption of the payload data through a
symmetric encryption scheme and the encryption of the symmetric key by the public
key scheme, as the most important application of public key schemes. It is obvious
that, under this assumption, the Niederreiter PKC has a considerable advantage in the
ciphertext size, while the plaintext size is always large enough for the encryption of
symmetric keys that have a size appropriate for the respective public key security level.
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In this chapter, we investigate side channel and fault attack vulnerabilities of code-
based cryptosystems. In Section 4.1, we demonstrate the threat of message-aimed
attacks against the code-based decryption and propose appropriate countermeasures.
Afterwards, in Section 4.2, we devise two key-aimed attacks against code-based cryp-
tosystems. For both types of attack, we give practical implementations and propose
countermeasures. The last type of attack against code-based cryptosystems that we in-
vestigate in Section 4.3 are fault attacks. In Section 4.4, we show that all these attacks
that we present for the McEliece PKC are transferable to the Niederreiter PKC. Finally,
in Section 4.5, we investigate the relations of message-aimed timing and fault attacks
and countermeasures between the McEliece and RSA schemes.

4.1. Message-aimed Side Channel Attacks against the
Decryption Operation

In this section, we develop message-aimed side channel attacks against code-based cryp-
tosystems, i.e. attacks that aim at recovering the message to a given ciphertext by
gathering side channel information about the decryption operation. The observation
that all of these attacks base on is as follows. From (2.1), it is apparent that the fol-
lowing connection between the number of errors w in a ciphertext and the degree of the
error locator polynomial σ(Y ) is given: if w ≤ t, then deg (σ(Y )) = w. Otherwise, with
high probability, if w > t, then deg (σ(Y )) = t as experimental results show, and never
larger. The probability for lower degrees, in this case, is given approximately through
the probability of the respective number of coefficients among σt, σt−1, etc. becoming
zero when each is chosen randomly and equally distributed from F2m .

This observation leads to two timing vulnerabilities in the syndrome decoding: the
first, presented in Section 4.1.1, is given in the root-finding step [1]; the second, given in
Section 4.1.2, in the syndrome decoding EEA [2]. For the latter, a related power analysis
attack [6] is described in Section 4.1.3. Finally, in Section 4.1.4, we present a further
timing vulnerability for a specific choice of the root-finding algorithm [5].

4.1.1. Timing Vulnerabilities in the Root-Finding based on the Degree of
the Error Locator Polynomial

The first message-aimed attack we develop exploits a trait of the root-finding algorithm.
The most straightforward root-finding variant is the exhaustive evaluation of the error
locator polynomial σ(Y ) for each support element (refer to Section 2.1 for the role of
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the support elements), given by eval-rf presented in Section 3.3.2.1. In the following, we
assume this algorithmic choice. There, the evaluation is done with the Horner scheme.
The running time of this operation depends linearly on the degree of σ(Y ). This gives
us the timing effect that will be exploited in the attack: for larger degrees of σ(Y ),
the time taken by the decryption operation is larger than for smaller degrees of this
polynomial. Since for each of the n support elements t multiplications and additions in
F2m are carried out, a considerable timing difference results for the evaluation of σ(Y )
of different degrees. According to the explanations in Section 4.1, the degree of σ(Y ) is
closely related to the weight w of the error vector.

The general idea of the attack that exploits this timing behaviour is as follows: the
attacker holds a ciphertext he wishes to decrypt. He inputs manipulated versions of the
ciphertext, which differ from the original only in a single bit, into the decryption device
and measures the decryption time. From the timing, he deduces whether, at this bit
position, the corresponding bit in the error vector had value one or zero.

The attack is specified in Algorithm 8. There, sparse vec (i) denotes the vector with
zeros as entries, except for the i-th position having value 1, and the first position being
indexed by 0. The starting point is that the attacker wishes to decrypt the ciphertext z.
He subsequently creates n manipulated versions z′i of the ciphertext z by flipping a single
bit in each. The position where he performs the bit flip is i. He inputs this ciphertext
into the decryption device N times and takes the average of the resulting timings. Then,
he finds the guesses for the error positions in the original ciphertext as the t indexes i,
which are associated with the t lowest timings.

The attack works on the base of the following reasons: If in a manipulation of the
ciphertext he chooses an error position, i.e. ei = 1 in the error vector used during
encryption, the bit flip will reduce the error weight w by one, causing the degree of σ(Y )
to be t− 1. Otherwise, the degree of σ(Y ) will be with high probability equal to t. By
virtue of the above analysed timing effects concerning the degree of σ(Y ), he can, in this
way, determine for every position i whether ei = 1 or ei = 0. This allows him to find
the error vector ~e used during encryption. Subsequently, he can recover the message ~m
by solving ~z = ~mG⊕ ~e.

Algorithm 8 Timing Attack against the evaluation of σ~e(X)

Input: ciphertext ~z, and the parameter t of the McEliece PKC.
Output: a guess ~e′ of the error vector ~e used by Alice to encrypt ~z.

1: for i = 0 to n− 1 do
2: Compute ~zi = z ⊕ sparse vec (i).
3: Take the time ui as the mean of N measured decryption times where ~zi is used as

the input to the decryption device.
4: end for
5: For the t smallest timings ui put the corresponding indexes i into the set M .
6: return the vector ~e′ with entries e′i = 1 when i ∈M and all other entries as zeros.

The attack was carried out against the Java McEliece implementation in the Flexi-
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Hamming distance of e′ and e success probability of the attack

0 48%
2 77%
4 96%
6 99%
8 99%

10 100%
12 100%
14 100%
16 100%
18 100%
20 100%
22 100%
24 100%

Table 4.1.: Experimental results of the attack according to Algorithm 8 against the Flex-
iProvider [54] Java implementation without countermeasures. The left col-
umn shows the upper bound of the number of wrongly determined error
positions in the reconstructed error vector ~e′ in contrast to the actual error
vector ~e. The right column gives the probability for this upper bound to be
met for a single attack.

Provider [54]. There, the decryption operation was called from the attack program and
the time taken by the operation was determined by the time functions provided by the
Java Virtual Machine. Table 4.1 shows the results of the attack in terms of success
probabilities. Here, the value of the attack parameter N = 2 was used. The first entry
gives the probability 48% for the attack to completely determine the correct error vector.
Thus, the main result is that the attack successfully finds the correct error vector with
probability about one half.

A countermeasure against this vulnerability could simply be given through artificially
raising the degree of σ(Y ) before the root-finding. However, there are further sources
of timing differences occurring at earlier stages of the decryption procedure that can be
exploited for an analogous attack, this will be subject of the following section. As the
countermeasure to protect against these further vulnerabilities also removes the above
explained vulnerability in the root-finding, there is no need for the realization of this
manipulation of σ(Y ).

4.1.2. Timing Vulnerability of the Key Equation solving EEA and
Countermeasures

In this section, we show that even in the absence of the timing vulnerability in the
root-finding algorithm presented in the previous section, there is a remaining vulnera-
bility in a previous part of the decryption algorithm yielding smaller timing differences.
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This vulnerability allows the same attack as the one presented in Section 4.1.1, because
apart from the quantative differences, the timing effect is the same as that explained in
Section 4.1.1. Specifically, the vulnerability is located in the key equation solving EEA,
given in Algorithm 9. After the theoretical analysis of the vulnerability, we explain
countermeasures and experimental results.

4.1.2.1. Identification of the Vulnerability

Algorithm 9 The Extended Euclidean Algorithm (EEA(r−1(Y ), r0(Y ), d))

Input: the polynomials r−1(Y ) and r0(Y ), with deg (r0(Y )) < deg (r−1(Y ))
Output: two polynomials rN (Y ), bN (Y ) satisfying rN (Y ) = bN (Y )r0(Y ) mod r−1(Y )

and deg (r0(Y )) ≤ bdeg (r−1) /2c
1: b−1 ← 0
2: b0 ← 1
3: i← 0
4: while deg (ri(Y ))) > d do
5: i← i+ 1
6: (qi(Y ), ri(Y ))← ri−2(Y )/ri−1(Y ) // polynomial division with quotient qi(Y ) and

remainder ri(Y )
7: bi(Y )← bi−2(Y ) + qi(Y )bi−1(Y )
8: end while
9: N ← i

10: return (rN (Y ), bN (Y ))

The timing vulnerability that we demonstrate in this section is based on the connection
between the Hamming weight of the error vector and the number of iterations of the key
equation solving EEA, which is invoked in the McEliece decryption from the Patterson
Algorithm, i.e. Algorithm 1, in Step 4. The number of iterations in turn is naturally
correlated with the algorithm’s execution time, which builds the basis of the attack.

The key equation solving EEA is invoked with the polynomials g(Y ) and τ(Y ) and d =
b t2c as parameters. According to the break condition specified by d and the connection∏w−1
i=0 (αEi ⊕ Y ) = σ(Y ) = a(Y )2 ⊕ Y b(Y )2, with {Ei|i ∈ {1, . . . , w}} being the indexes

of the bits having value one in the error vector, we have

deg (a(Y )) ≤
⌊w

2

⌋
and (4.1)

deg (b(Y )) ≤
⌊
w − 1

2

⌋
, (4.2)

if w ≤ t.
We now analyse how the value of w influences the number of iterations N executed in

the key equation solving EEA, which, as already mentioned, certainly influences the tim-
ing of this operation. To this end, we first assume that in each iteration the degree of the
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Figure 4.1.: Possible EEA iteration counts as a function of the error vector weight under
the assumption that all quotient polynomials qi(Y ) have degree one.

quotient qi(Y ) is one, which happens with a probability of about PNmax = (1−2−m)Nmax ,
where Nmax is the number of iterations carried out in the case that all quotients have
degree one. This probability is derived from the assumption that the coefficients of the
remainders are random and equally distributed chosen from F2m . Then, in each itera-
tion, the probability for the reduction of the degree of the remainder by one is (1−2−m).
For McEliece parameters m = 11 and t = 50, for instance, we have PNmax = 98.83%.
Accordingly, we find

deg (b(Y )) =

Nmax∑
i=1

1 = Nmax =

⌊
w − 1

2

⌋
. (4.3)

This means that, for odd t, reducing the number of errors w from t to t − 1 through
a bit flip on the ciphertext by the attacker, just as described in Section 4.1.1, leads to
Nmax,t−1 = t−3

2 in contrast to Nmax,t = t−1
2 for the original ciphertext.

For an even value of t, the error weight has to be reduced by at least two to produce
a reduced value of Nmax. The connection between the error weight and Nmax for odd
and even values of t is given in Figure 4.1. The reason for the difference between these
two cases is that for Nmax = deg (b(Y )), odd t and w = t, it is b(Y ) that yields the
leading coefficient of σ(Y ). Thus, a reduction of the error weight to w = t − 1 implies
that the degree of b(Y ) is reduced by at least one, since now a(Y ) must determine the
leading coefficient. For even t and w = t, it is a(Y ) that provides the leading coefficient
of σ(Y ), and reducing w to t − 1 causes b(Y ) to take on this role, but according to
σ(Y ) = a(Y )2 ⊕ Y b(Y )2, its degree will not be reduced.

We now analyse the problem of the attacker to create ciphertexts with an error weight
of t− 2 in the course of the attack. Clearly, the probability to produce ciphertexts of an
error weight w = t−x from an original ciphertext with t errors through random bit flips
becomes smaller with growing x. Table 4.2 gives some example values showing that for
the exemplary parameter set the attacks against McEliece implementation with even t
are still feasible.
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w Probability Example: t = 50 and n = 2048

t− 1 t
n 2.44%

t− 2 t
n
t−1
n−1 0.06%

t− 3 t
n
t−1
n−1

t−2
n−2 0.0026%

Table 4.2.: Probability to create manipulated ciphertexts with a given w.

4.1.2.2. Timing Countermeasure

The countermeasure to protect against this vulnerability is realized by detecting and
preventing a premature abortion of the EEA, which can only happen if w < t. For even
values of t, this is achieved by ensuring that deg (a(Y )) = dbreak. If its degree is lower,
i.e. deg (ri(Y )) < t and Algorithm 9 would terminate, then ri(Y ) is manipulated such
that deg (ri(Y )) = deg (ri−1(Y )) − 1, which would be the most probable progression of
the algorithm in the case w = t.

In the case of odd t, it has to be ensured that Nmax = deg (b(Y )) = dbreak, as then the
attacker gets no information about the error weight. Again, if the degree of the current
remainder ri(Y ) is lower than dbreak, i.e. the termination condition for Algorithm 9 is
fulfilled, but at the same time deg (bi(Y )) < dbreak, then the current ri(Y ) is manipulated
in the same way as described for even t. The EEA with these countermeasures is given
in Algorithm 10.

The reason for the validity of the approach for odd t is given by the following ob-
servations: deg (ri(Y )) ≤ dbreak is the condition for the last iteration. If in the last
iteration deg (bi(Y )) < dbreak, we would have deg (σ(Y )) < t, in this case the degree of
the remainder is manipulated as in the case of even values of t. The reason that this en-
forces Nmax iterations (ignoring any potentially previous random skipping of iterations)
is based on the connection between deg (ri(Y )) and deg (bi(Y )) that is enforced by the
EEA. Any change of the degree of the remainders deg (ri(Y )) = deg (ri−1(Y ))− x leads
to deg (qi+1(Y )) = x, and consequently to deg (bi+1(Y )) = deg (bi(Y )) + x. Thus, only
the last iteration can cause a decrease of the degree of a(Y ) = rN (Y ) without a corre-
sponding increase of the degree of b(Y ) = bN (Y ). Accordingly, if deg (bi(Y )) < dbreak,
then deg (ri−1(Y )) > dbreak, which shows that the countermeasure proposed for odd t
works, since then successive decrements of deg (ri(Y )) lead to deg (bN (Y )) = dbreak.

4.1.2.3. Implementation and Verification of the Countermeasure

The attack and the effectiveness of the countermeasures were experimentally verified on
an FPGA implementation. Specifically, the McEliece decryption for code parameters
n = 2048 and t = 50 was implemented on a Virtex-5 Xilinx FPGA. To assess the
running time dependency on the error weight w, the following test ciphertexts were
created: from an original ciphertext with w = 50 the ciphertexts z1 with w = 49 and
z2 with w = 48 were created by flipping the corresponding number of error positions.
The decryption timings that were found for these three ciphertexts with and without the
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Algorithm 10 EEA with countermeasures against message-aimed attacks

Input: τ(Y ), g(Y )
Output: a(Y ) and b(Y ), with b(Y )τ(Y ) = a(Y ) mod (g(Y )) and deg (a(Y )) ≤ dbreak

1: r−1(Y ) = g(Y )
2: r0(Y ) = τ(Y )
3: b−1(Y ) = 0
4: b0(Y ) = 1
5: i = 0
6: while deg (ri(Y )) > dbreak do
7: i = i+ 1
8: qi(Y ) = ri−2(Y )/ri−1(Y )
9: ri(Y ) = ri−2(Y ) mod ri−1(Y )

10: bi(Y ) = bi−2(Y ) + qi(Y ) · bi−1(Y )
11: if t even then
12: if deg (ri(Y )) < dbreak then
13: Manipulate ri(Y ), so that deg (ri(Y )) = deg (ri−1(Y ))− 1
14: end if
15: else
16: if deg (ri(Y )) ≤ dbreak AND deg (bi) < dbreak then
17: Manipulate ri(Y ), so that deg (ri(Y )) = deg (ri−1(Y ))− 1
18: end if
19: end if
20: end while
21: a(Y ) = ri(Y )
22: b(Y ) = bi(Y )
23: return a(Y ) and b(Y )
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~z w cycles w/o countermeasure cycles w/ countermeasure

~z t 189,138 189,138

~z1 t− 1 189,138 189,138

~z2 t− 2 188,836 189,138

Table 4.3.: Timings for the decryption on the FPGA implementation with code param-
eters n = 2048, t = 50 and ciphertexts with different error weights.

countermeasure described in Section 4.1.2.2 are given in Table 4.3. Because of t being
even, the error weight w must be reduced by two in order to achieve a decrease of the
timing in the unprotected version. The results show the vulnerability of the unprotected
version with respect to the timing attack developed in Section 4.1.1. The protected
version has constant timings for all three ciphertexts. Accordingly, the vulnerability is
not present in this version.

4.1.3. A related Simple Power Analysis Attack against the Key Equation
Solving EEA

Any timing attack based on the distinction of different control flows can be extended
to a simple power analysis attack if it is possible to distinguish the control flows in
the power trace. This means that it is not sufficient for a countermeasure to simply
ensure unambiguous overall timings of the total cryptographic operation if power analysis
attacks shall be thwarted as well. In the following, a simple power analysis attack against
an FPGA implementation is developed based on the vulnerability explained in Section
4.1.2.1. After explaining the measurement setup, we give the experimental results of
the attack, and finally devise appropriate countermeasures, the effect of which is again
demonstrated in an experiment.

4.1.3.1. Measurement Setup

For the simple power analysis attack, the relevant part of the McEliece decryption, i.e.
the EEA, was implemented on a SASEBO-G board [55], which was specifically developed
for the purposes of performing power analysis attacks against implementations on the
Virtex-II P30 FPGA that is installed on this board. The restriction of the implementa-
tion to only the relevant parts is due to the fact that the complete McEliece decryption
with the parameters n = 2048 and t = 50 could not be realized on the limited resources
of the board’s FPGA. The FPGA’s clock rate was set to 50 MHz.

The power measurement is performed by measuring the voltage drop along a 1Ω
resistor connected to the FPGA’s power supply with a digital sampling oscilloscope.
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Figure 4.2.: Power Traces for the XGCD Implementation without Countermeasure

4.1.3.2. Attacks against the insecure Implementation

The attack is executed by inputting different polynomials τ(Y ) into the EEA. This is
done with the help of the Matlab-based control software. Specifically, three different
polynomials τ(Y ) corresponding to decryptions of ciphertexts with three different Ham-
ming weights: w = t, w = t− 1 and w = t− 2 are set as input data to the EEA, as well
as the corresponding Goppa polynomial g(Y ). The execution of the EEA with these
input polynomial τ(Y ) corresponds to the ciphertext inputs during the attack described
in Section 4.1.2. Then, the control software starts the EEA execution as well as the
recording of the power trace via the oscilloscope.

The experimental results are shown in Figure 4.2. The results are in line with the
theoretical analysis of Section 4.1.2.1 and the results of the timing attack given in Section
4.1.2.3: for w = t and w = t−1 the number of iterations, which is obviously equal to the
number of peaks in the trace before the drop of the height of the peaks, is 24, while it is
smaller by one for w = t−2. Since an attacker is able to distinguish these different error
weights, he is able to conduct a message-aimed attack in the same manner as described
in Section 4.1.2.1.

4.1.3.3. Countermeasure

The fundamental approach of the countermeasure is equal to the one protecting against
the underlying timing vulnerability, given in Algorithm 10, but to achieve security
against power analysis attacks, it is important to ensure that all operations are exe-
cuted unconditionally.
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As in the timing attack presented in Section 4.1.2.1, the analyzed implementation
features an even value of t. From a high level point of view, the countermeasure, as
in the case of the timing attack countermeasure, works as follows: When it is found
that deg (ri(Y )) < dbreak, which, in this case, indicates an improper ciphertext, all
coefficients of ri(Y ) are set to non-zero values so that deg (r′i(Y )) = deg (ri−1(Y )) − 1
and the proceeding of the algorithm is ensured.

The detailed implementation of the countermeasure is shown in Figure 4.3. The
unprotected implementation is given by the part with the white background including
the dashed line indicating the direct feedback of ri(Y ) into the next iteration as ri−1(Y ).
In each iteration, ri−1(Y ) and ri−2(Y ) are divided by the GOPF DIV unit, which outputs
the remainder ri(Y ) as well as the quotient qi(Y ), which is further processed in the
update of the value of bi(Y ).

In the protected implementation however, which additionally features the area with
the blue background, the direct feedback of ri(Y ) denoted by the dashed line is not
realized. Instead, the degree of ri(Y ) is determined, and, in case of being smaller than
dbreak, an improper ciphertext is detected, and ri(Y ) is modified to r′i(Y ) by setting
all coefficients to predetermined values as described above. This is done in the register
in the blue countermeasure area of Figure 4.3, which otherwise contains ri(Y ), i.e. if
no improper ciphertext is detected. In the case that the attack is detected in the last
iteration (i.e. deg (ri(Y )) = dbreak), r′i(Y ) is output directly.

To verify the countermeasure’s effectiveness, the power measurements were repeated
with the same input data. The result is depicted in Figure 4.4. The difference in the
number of peaks allowing to deduce the number of iterations is not given anymore.

4.1.4. Vulnerability in Root-Finding with exhaustive Evaluation and Division

In this section, we present a new timing vulnerability that is given for a special choice
of the root-finding algorithm. In Section 4.1.1, it was explained that in the case of
wt (~e) < t, the error locator polynomial σ(Y ) will have a degree smaller than t, which
might be revealed through the timing in an unsecured implementation of the McEliece
decryption, where timing differences occur in both the Patterson Algorithm and the
root-finding algorithm. We have also explained that it is known how to achieve security
against these threats.

In this section, however, we want to point out another potential vulnerability in the
root-finding algorithm concerning the message-aimed attacks against the McEliece cryp-
tosystem. Specifically, the problem arises when this algorithm involves factoring the
error locator polynomial. An example for this is eval-div-rf given by Algorithm 6 in
Section 3.3.2.1. There, an exhaustive search for the roots in F2m is improved in terms
of running time by dividing the polynomial by each root that was found. We show that
with this algorithmic choice significant timing differences exist between the cases w = t
and w > t. To this end, we analyse the behaviour of the degree of the error locator
polynomial for these two cases.

As already discussed in Section 4.1, for w < t, this degree will be equal to w. On the
other hand, as experimental results show, the error locator polynomial output by the
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Figure 4.3.: Datapath of the EEA Implementation with Countermeasure

Patterson Algorithm in the case that more than t errors occurred, has much fewer than
t roots (typically less than five in our tests with parameters n = 2048, t = 50). This
extends the running time of the root-finding algorithm in the case the attacker flipped a
bit at a non-error position (i.e. w = t+ 1), since much fewer divisions occur then, and,
accordingly, the average degree of the error locator polynomial for the n evaluations is
considerably higher.

We performed experiments with a proprietary implementation of the McEliece de-
cryption written in the “C” programing language without any of the countermeasures
against the message-aimed attacks from Sections 4.1.1 and 4.1.2 on a personal computer.
We used the code parameters n = 2048 and t = 50. The result shown in Figure 4.5 de-
picts the mean running time of the decryption operation as a function of the weight
of the error vector ~e. For this figure, 100,000 measurements of the decryption of the
same ciphertext were used for each error weight on the horizontal axis. The standard
deviation of the respective data sets is given as error bars. The results where obtained
on an Intel Core Duo T7300 running Linux, the code was compiled with GCC 4.2.4. For
the domain wt (~e) ≤ t, we see the influence of the previously known vulnerabilities men-
tioned in Sections 4.1.1 and 4.1.2. The effects of the problems introduced by Algorithm
6 manifest themselves as an increased running time when wt (~e) > t = 50. Clearly, an
attacker is able to distinguish whether a bit flip introduced by him on the ciphertext
was an error position or not based on the timing.

Note that the case of w < t is covered by the countermeasures proposed in Section

43



4. Side Channel Security

0                  100                200                300                400                500
Time [ns]

 

 
no bit flip 1 bit flip 2 bit flips

Figure 4.4.: Power Traces for the EEA Implementation with Countermeasure

4.1.2.2, i.e. it is rendered indistinguishable from the case w ≥ t. In the presence of these
countermeasures, the decryption of a ciphertext with wt (e) < t also results in σ(Y ) with
degree t and very few roots because of the pseudorandom manipulation of the remainder
in the EEA. But it is important to be aware that even if w < t and w > t are not
distinguishable based on the timings, but w = t can be distinguished from w 6= t, an
attack is still possible: by flipping two bits in a ciphertext and trying to find those cases
where w = t, the attacker will learn whenever he flipped one non-error and one error
position.

As a consequence, in a secure implementation of the McEliece decryption, in addition
to the countermeasures regarding the Patterson Algorithm, it is required to avoid the
introduction of dependencies of the root-finding algorithm’s running time on the error
weight. This can for instance be achieved by simply leaving out the division in Step 5
of Algorithm 6.

4.2. Side Channel Attacks against the secret Support

In the following, we investigate timing vulnerabilities that allow attacks against the secret
key. The first attack, given in Section 4.2.1, exploits vulnerabilities in the two invocations
of the EEA, i.e. the syndrome inversion in Algorithm 1, Step 2 and the solving of the
key equation in Algorithm 1, Step 4 [9, 3]. The second type of vulnerability, presented
in Section 4.2.2, is found in certain root-finding algorithm variants [7]. In both cases,
the aim of the attack is to recover the secret support Γ. This is enough to recover the
other part of the secret key, the Goppa Polynomial g(Y ), as well [18].
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4.2.1. Timing Attacks against the EEA

In this section, we develop a timing attack that targets the recovery of the secret support.
The attack builds on three different vulnerabilities, which we analyse in the following
sections. To this end, in the next section, we first explore certain general properties
of the syndrome inversion that is part of the code-based decryption with the Patter-
son Algorithm. The syndrome inversion is achieved by the use of the EEA. Then, in
Sections 4.2.1.2 and 4.2.1.3, we explore how these general properties lead to exploitable
timing differences when the attacker prepares ciphertexts with fixed error weights w = 4
and w = 6, respectively. Specifically, through the leakage, the attacker learns certain
equations about the elements of the secret support. While in these analyses we only
considered the syndrome inversion, which is the first application of the EEA during the
code-based decryption, Section 4.2.1.4 shows that the second application of the EEA,
i.e. for the solving of the key equation, contributes to the increase of the found timing
differences. Afterwards, in Section 4.2.1.5, we show a third vulnerability that reveals
the zero element of the support. Consequently, Section 4.2.1.6 introduces an attack that
exploits all three vulnerabilities. Section 4.2.1.7 presents experimental results that show
the practicality of the attack.

To complete the analysis, in Sections 4.2.1.8, 4.2.1.9, we consider the effect of counter-
measures against other timing attacks on the practicality of the new attack and discuss
possible extensions of the attack. Finally, Section 4.2.1.10 addresses the problem of
countermeasures against this attack.

For simplicity, we confine the analysis to the case n = 2m.

4.2.1.1. Properties of the Syndrome Inversion

In this section, we determine a basic property of the syndrome inversion EEA that will
be used in the subsequent sections to derive concrete timing vulnerabilities. To this end,
we turn to the form of syndrome polynomial.

The syndrome polynomial is defined as

S(Y ) ≡
w∑
i=1

1

Y ⊕ εi
≡ Ω(Y )

σ(Y )
mod g(Y ) (4.4)

Here, w is the Hamming weight of the error vector ~e and the {εi|i ∈ {1, . . . w}} denote
the support elements associated with the indexes of those bits in the error vector having
value one in arbitrary ordering. For instance, if the bits found at the index j and k in
the error vector have value one, then ε1 = αj , ε2 = αk and so on. The identification of
the error locator polynomial σ(Y ) in the denominator is simply a result of the form of
the common denominator of all sum terms. In the McEliece PKC Decryption, during
the error correction, Algorithm 1, Step 3, S−1(Y ) is computed by invoking Algorithm 9
as EEA(g(Y ), S(Y ), 0). But it is known that in case of w ≤ t/2, instead, it is possible
to find σ(Y ) already at this stage with the EEA:

Theorem 4.2.1. Assume a Goppa Code defined by g(Y ) and Γ. For the Hamming weight
w of the error vector associated with S(Y ) let w ≤ t/2. When Algorithm 9 is invoked as
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EEA(g(Y ), S(Y ), bt/2c), i.e. with r−1(Y ) = g(Y ) and r0(Y ) = S(Y ) and breaking once
deg (ri(Y )) ≤ (t/2) then it returns δσ(Y ) = bM (Y ) and furthermore δΩ(Y ) = rM (Y ).
Here, δ ∈ F2m and M is the number of iterations performed by the EEA .

Proof. For the proof, see [56] or [33], Chapter 12, §9.

Given this form of the S(Y ), we can make a statement about the maximally possible
number of iterations in the EEA used to compute S−1(Y ) ≡ σ(Y )/Ω(Y ) mod g(Y ). As
already mentioned, the actual invocation of the syndrome inversion is EEA(g(Y ), S(Y ), 0).
But Theorem 4.2.1 shows that, in this case, we could stop at deg (ri(Y )) ≤ t/2 to find
σ(Y ). This means that there is one iteration in the EEA, where ri(Y ) = δΩ(Y ) and
bi(Y ) = δσ(Y ), in case of w ≤ t/2.

Theorem 4.2.2. Assume a Goppa Code defined by g(Y ) and Γ. When Algorithm 9 is

invoked as EEA(g(Y ), S(Y ), 0) with S(Y ) ≡ Ω(Y )
σ(Y ) mod g(Y ), and the error vector ~e cor-

responding to S(Y ) satisfies wt (~e) ≤ (deg (g(Y )) /2), then for the number of iterations
in Algorithm 9 we find:

M ≤Mmax = deg (Ω(Y )) + deg (σ(Y ))

Proof. Consider the iteration where rj(Y ) = δΩ(Y ) and bj(Y ) = δσ(Y ). Since, accord-
ing to Algorithm 9, the degree of bj(Y ), starting from zero increases at least by one in
each iteration, we find j ≤ deg (σ(Y )). From the iteration j on, the degree of rj(Y ) =
δΩ(Y ) is decreased by at least one in each subsequent iteration down to deg (rM (Y )) = 0,
i.e. M − j ≤ deg (Ω(Y )), giving M = M − j + j ≤ deg (Ω(Y )) + deg (σ(Y )).

Because, in the following, we are only interested in the derivation of equations of the
form σi = 0 for a specific value of i, we will ignore the constant δ from here on.

4.2.1.2. Linear Equations from w = 4 Error Vectors

In this section, we demonstrate a connection between the number of iterations in the
syndrome inversion EEA and the form of one of the coefficients of the error locator
polynomial σ(Y ) for the specific case of ciphertexts with error weight w = 4. The number
of iterations of this EEA invocation, in turn, serves as source of timing differences.
Specifically, we will show that an attacker is able to learn linear equations about the
support elements.

To this end, we first investigate the effect of the results from Section 4.2.1.1 for the
case that ciphertexts created with error vectors of Hamming weight four are input to
the decryption operation. In the case of w = 4, the syndrome polynomial is of the form:

S(Y ) ≡ Ω(Y )

σ(Y )
≡

4∑
i=1

1

Y ⊕ εi
≡ σ3Y

2 ⊕ σ1

Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y ⊕ σ0
mod g(Y ), (4.5)

where εi ∈ F2m , i ∈ 1, . . . , 4 denote the four elements of the support associated with the
error positions. Furthermore, in the right-hand side of (4.5), which is found by bringing
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all four sum terms to their common denominator, we have

σ3 = ε1 ⊕ ε2 ⊕ ε3 ⊕ ε4,

σ2 = ε2ε3ε4 ⊕ ε1ε3ε4 ⊕ ε1ε2ε4 ⊕ ε1ε2ε3,

σ1 = ε1ε2 ⊕ ε1ε3 ⊕ ε1ε4 ⊕ ε2ε3 ⊕ ε2ε4 ⊕ ε3ε4,

σ0 = ε1ε2ε3ε4.

With the aim of finding a timing vulnerability revealing certain coefficients of σ(Y ),
and, thus, information about the secret support, we now analyze the connection between
the number of iterations on the one hand and the degree of Ω(Y ) on the other. Regarding
Ω(Y ) for the case w = 4, we find that the coefficient to the highest power of Y is given
by σ3 = ε1 ⊕ ε2 ⊕ ε3 ⊕ ε4. If σ3 = 0, then the degree of Ω(Y ) is zero, otherwise
it is two. According to Theorem 4.2.2, this means that in the case of σ3 = 0, the
maximal number of iterations in the inversion is four, in contrast to six in the general
case. Under the assumption that always the maximal number of iterations occur, and
under the additional assumption that the duration of a single iteration of the EEA is
sufficiently large, the following vulnerability is given: Assume the attacker inputs random
ciphertexts with w = 4. He can now determine those decryptions where σ3 = 0 from the
timing, as they coincide with a smaller M , i.e. fewer iterations of the EEA. Given that
he knows which error positions he chose in preparation of the ciphertext, he now knows
the equation σ3 = ε1 ⊕ ε2 ⊕ ε3 ⊕ ε4 = αj1 ⊕ αj2 ⊕ αj3 ⊕ αj4 = 0 describing the secret
support.

We now give arguments as to why the results are still valid when we drop the assump-
tion that always the maximal number of iterations is executed. In the majority of the
cases Mmax iterations occur, i.e. six when deg (Ω(Y )) = 2 and four when deg (Ω(Y )) = 0.
In this case, all the quotients qi(Y ) have degree one. But, with probability about 1/n
in each iteration, a larger degree of the quotient polynomial qi(Y ) occurs (Section 4.1.2
already explored this behaviour of the EEA), accordingly, we have M < Mmax. With
the aim of assessing the reliability of the differences in the running time allowing to
identify the case deg (Ω(Y )) = 0, we examine whether M < Mmax might lead to timings
for deg (Ω(Y )) = 2 as low as for deg (Ω(Y )) = 0, which would complicate the timing
attacks as then a reliable distinction of σ3 = 0 and σ3 6= 0 would not be possible.

To this end, we will prove three theorems that hold only for the case of ciphertexts
built with w = 4 error vectors. Taken together, they show that the by far most complex
polynomial multiplication within the EEA execution is only executed when σ3 6= 0. In
this course, we refer to the iteration where rj(Y ) = δΩ(Y ) and bj(Y ) = δσ(Y ), discussed
in Section 4.2.1.1, as the intermediate iteration and use the index j to identify it. Table
4.4 is given as an aid. It shows the degrees of the polynomials in each iteration of the
EEA for the case σ3 6= 0 and the assumption that the maximal number of iterations is
carried out.

First, we show that the following theorem holds:
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Theorem 4.2.3. In the case of σ3 = 0, the intermediate iteration is the last iteration
of the syndrome inversion EEA. Otherwise, if σ3 6= 0, at least one iteration is performed
after the intermediate iteration.

Proof. The first statement is immediately obvious, since in this case deg (Ω(Y )) =
deg (rj(Y )) = 0, and thus the EEA is completed. The second one is true because in
this case deg (Ω(Y )) = deg (rj(Y )) = 2, and the break condition of the EEA is not yet
satisfied.

Next, we show a result about the complexity of the multiplications:

Theorem 4.2.4. Concerning the polynomial multiplication bi−1(Y )qi(Y ) that is carried
out in each iteration of the EEA, for all iterations from the first up to and including the
intermediate iteration, the maximally possible degree of the factors is 4.

Proof. Note that bi−1(Y ) grows at least by one in each iteration from 0 to the value
4 in the intermediate iteration. Thus, this factor can have at most degree four. On
the other hand, qi(Y ) cannot be larger than 3 in the iterations before, and including,
the intermediate iteration: otherwise, deg (bj(Y )) =

∑j
i=1 qi(Y ) > 4, which would mean

that the intermediate iteration was skipped and thus is impossible.

Finally, we show a result about the high complexity of the multiplication in the iter-
ation after the intermediate iteration:

Theorem 4.2.5. The polynomial multiplication in the iteration after the intermediate
iteration has one factor qj+1(Y ) of degree t− 6 and the other factor bj(Y ) of degree 4.

Proof. The degree of bj(Y ) must be four in the intermediate iteration because deg (σ(Y )) =
4. It remains to prove the statement about qj+1(Y ). To this end, we first show that
deg (rj−1(Y )) = t− 4:

4 = deg (bj(Y )) =

j∑
i=1

deg (qi) = deg (r−1(Y ))− deg (rj−1(Y )) = t− deg (rj−1(Y )) .

(4.6)
Furthermore, it holds that deg (qj+1(Y )) = deg (rj−1(Y )) − deg (rj(Y )) = (t − 4) −
deg (rj(Y )). Now, since there is an iteration after the intermediate iteration, we must
have the case σ3 6= 0; consequently, the only possible value for deg (rj(Y )) is 2: According
to Theorem 4.2.1, deg (rj(Y )) = deg (Ω(Y )), which must be 2 for σ3 6= 0 according to
(4.5).

Taken together, Theorems 4.2.3, 4.2.4 and 4.2.5 show that the iteration with the
complex multiplication is carried out if and only if σ3 6= 0. For realistic code parameters,
t−6 is far greater than 4. This means that the complex polynomial multiplication is far
more costly than any other prior polynomial multiplication in the same EEA invocation.
Note that in a straightforward implementation, which is used in the attack scenario given
later, the cost of the polynomial multiplication is linear in the degree of either factor.
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i deg (qi(Y )) deg (bi(Y )) deg (ri(Y ))

1 1 1 t− 2
2 1 2 t− 3
3 1 3 t− 4

4 1 4 2

5 t− 6 t− 2 1
6 1 t− 1 0

Table 4.4.: Overview of the iterations in the syndrome inversion EEA for Hamming
weight four error vectors for the case σ3 6= 0, i.e. deg (Ω(Y )) = 2, and the
assumption that Mmax, the maximal number of iterations is carried out. The
intermediate iteration is shown in bold.

This means that we can be confident to distinguish the cases σ3 = 0 and σ3 6= 0 from
the timing even if not the maximal number of iterations Mmax is executed.

We do not show in detail that this cost, and thus the timing of the complex mul-
tiplication, is also large compared to the polynomial division, the other part of each
EEA iteration. However, from Algorithm 11 given later in Section 4.2.1.5, it is apparent
that the number of iterations in the division, and thus its running time grows with the
difference in the degrees of the input polynomials. Again, it is the iteration after the
intermediate iteration that features the most complex division, since there we divide
the polynomials rj−1(Y ) with degree t− 4, and rj(Y ) with degree 2, while for all prior
divisions the input polynomials have a difference in the degree of approximately 1.

4.2.1.3. Cubic Equations from w = 6 Error Vectors

The vulnerability found for w = 4 error vectors can be generalized to any even value of
w. For our attack, we also employ the case w = 6. There, we find that the syndrome
polynomial according to (4.4) is of the form

S(Y ) ≡ Ω(Y )

σ(Y )
≡ σ5Y

4 ⊕ σ3Y
2 ⊕ σ1

Y 6 ⊕ σ5Y 5 ⊕ σ4Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y + σ0
mod g(Y ), (4.7)

where

σ3 =
6∑
j=3

j−1∑
k=2

k−1∑
l=1

εjεkεl, (4.8)

σ5 =

6∑
i=1

εi. (4.9)

The vulnerability here is that an attacker can detect σ3 = 0 and simultaneously σ5 = 0
from the timing, which is lower in this case. Now, we introduce the assumption that
σ5 = 0 for all ciphertexts with w = 6. This is because in the attack that is presented in
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Section 4.2.1.6, this condition is satisfied (it is achieved by using prior knowledge found
through the other vulnerabilities for the creation of the w = 6 ciphertexts).

Again, the main reason for this timing effect is that in this case deg (Ω(Y )) = 0, and
thus, according to Theorem 4.2.2 two iterations fewer are executed in the EEA than in
the general case (where σ5 = 0 and thus deg (Ω(Y )) = 2).

In the following, we show that it is again the most complex iteration, i.e. the one
featuring the by far most complex polynomial multiplication of the syndrome inversion
EEA that is skipped if deg (Ω(Y )) = 0. To this end, we adopt Theorems 4.2.3, 4.2.4
and 4.2.5 to the case of w = 6 and the additional above stated assumption that always
σ5 = 0.

Theorem 4.2.6. In the case of σ3 = 0 (and simultaneously σ5 = 0), the intermediate
iteration is the last iteration of the syndrome inversion EEA. Otherwise, if σ3 6= 0, at
least one iteration is performed after the intermediate iteration.

Proof. The result simply follows from adopting the proof of Theorem 4.2.3.

Theorem 4.2.7. Concerning the polynomial multiplication bi−1(Y )qi(Y ) that is carried
out in each iteration, for all iterations from the first up to and including the intermediate
iteration, the maximal possible degree of the factors is 6.

Proof. The result simply follows from adopting the proof of Theorem 4.2.4.

Theorem 4.2.8. The polynomial multiplication in the iteration after the intermediate
iteration has one factor qj+1(Y ) of degree t− 8, and the other factor bj(Y ) of degree 6.

Proof. For the degree of bj(Y ), the proof is analogous to that of Theorem 4.2.5. For the
degree of qj+1(Y ), we give the differences of the values to those used in Theorem 4.2.5:
We first see that deg (rj−1(Y )) = t− 6 and that the only possible value of deg (rj(Y )) is
2 (since σ5 = 0). Thus, we find that deg (qj+1(Y )) = t− 8.

Since t − 8 is far greater than 6 for reasonable code parameters, we see that also for
the w = 6 error vectors σ3 = 0 reliably leads to low timings, since then the most complex
polynomial multiplication is skipped. Thus, from detecting deg (Ω(Y )) = 0, the attacker
can learn the equations σ3 =

∑6
j=3

∑j−1
k=2

∑k−1
l=1 εjεkεl = 0.

4.2.1.4. Enlargement of the Timing Differences by the Key Equation Solving EEA

From the analysis of Sections 4.2.1.2 and 4.2.1.3, we now infer how the case deg (Ω(Y )) =
0 influences the execution of the other EEA invocation during the code-based decryption,
the key equation solving EEA in Algorithm 1, Step 4. We will find that the key equation
solving EEA is subject to effects that even enlarge the timing differences resulting from
the vulnerabilities found in the two previous sections.

From (4.5) and (4.7), we find that the coefficients of Ω(Y ) are a subset of the coeffi-
cients of the polynomial of σ(Y ). Specifically, they are the coefficients of σ(Y ) to odd
powers of Y . According to Algorithm 1, Step 5, it is b(Y ), determined by the key equa-
tion solving EEA, which provides the contribution of odd powers of Y to σ(Y ). Thus,
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if deg (Ω(Y )) = 0, we must have deg (b(Y )) = 0 as well. Considering the determination
of b(Y ) via the key equation solving EEA, Algorithm 9, we find that we must have
N = 0, with N being the number of iterations in this EEA execution, since b0 = 1 is the
only way to satisfy this restriction on the degree of b(Y ). On the other hand, since for
w = 4 we have deg (Ω(Y )) = 2 as the only alternative, we have N = 1. For w = 6 and
deg (Ω(Y )) > 0, we have N ≥ 1.

The experimental results from Section 4.2.1.7 confirm that, taken together, the timing
differences emerging in both EEA applications, i.e. the syndrome inversion and the key
equation solving, actually allow for reliable distinction of deg (Ω(Y )) being zero or non-
zero, and thus the attacker is able to learn equations of the form σ3 =

∑4
i=1 εi = 0 resp.

σ3 =
∑6

j=3

∑j−1
k=2

∑k−1
l=1 εjεkεl = 0. Remember that through the choice of the error vector

during encryption, he chooses the indexes ji with i = 1, . . . , w of the support elements
αji = εi according to the definition of the εi notation for the support elements.

4.2.1.5. The Zero Element of the Support from w = 1 Error Vectors

We now show a timing vulnerability that allows for the determination of the position
of the zero element in the secret support by inputting error vectors of Hamming weight
one into the decryption operation.

For w = 1, the whole control flow in Patterson’s Algorithm is very simple and unam-
biguous on a high level:

S(Y ) ≡ 1

Y ⊕ ε1
mod g(Y ),

S−1(Y ) = Y ⊕ ε1,

τ(Y ) =
√
ε1

a(Y ) = τ(Y )

b(Y ) = 1

σ(Y ) = Y ⊕ ε1

The polynomial inversion is, according to Theorem 4.2.2, performed in exactly one iter-
ation. But there is an ambiguous control flow within the polynomial division given in
Algorithm 11 that is executed within this EEA iteration. For w = 1, the only division
that is carried out is g(Y )/S(Y ). We find q1(Y ) = Y because there is no alternative to
deg (S(Y )) = t−1. In Algorithm 11, si,j denotes the coefficient to Y j in si(Y ). If ε1 = 0,
then the division has to stop at this point. Otherwise, a second iteration is performed
giving q2(Y ) = Y ⊕ ε1 with ε1 6= 0. Thus, if the timing difference resulting from the
different number of iterations in the division is detectable, the index of z of the secret
support element αz = 0 can be found.
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Algorithm 11 Polynomial Division poly div(n(Y ), d(Y ))

Input: the polynomials n(Y ), d(Y ) with deg (n(Y )) ≥ deg (d(Y ))
Output: two polynomials s(Y ), q(Y ) with q(Y )d(Y ) + s(Y ) = n(Y ) and deg (s(Y )) <

deg (d(Y ))
1: s−1(Y )← n(Y )
2: s0(Y )← d(Y )
3: q0(Y )← 0
4: i← 0
5: while deg (si(Y )) ≥ deg (d(Y )) do
6: i← i+ 1
7: ai ← si−2,deg(si−2(Y ))/si−1,deg(si−1(Y ))

8: fi ← deg (si−2(Y ))− deg (si−1(Y ))
9: qi(Y ) = qi−1 + aiY

fi

10: si ← si−2(Y )− aisr−1(Y )Y fi

11: end while
12: return (qi(Y ), si(Y ))

4.2.1.6. Combining the “w = 1”, “w = 4”, and “w = 6” Vulnerabilities to a
practical Attack

In this section, we explain the construction of a practical attack based on the vulner-
abilities shown in Sections 4.2.1.2, 4.2.1.3 and 4.2.1.5. The attack is partitioned into
three steps: in Step 1, a linear equation system is built from the information gained
through the “w = 1” and “w = 4” vulnerabilities. In the second step, cubic equations
are collected in a specific way. The third and last step is the solving of the resulting
equation system. For each step, we first explain the theoretical background and then
give the attack description for the respective step. For the third step, we also provide
an example for better understanding.

Step 1 – Collecting linear Equations

Theory We recapitulate again the information the attacker gains from the “w = 4”
ciphertexts, which was derived in Section 4.2.1.2. According to the results of that section,
he can determine from the timing of the decryption operation whether σ3 = 0 or σ3 6= 0.
Specifically, the former case is indicated by a lower timing. The equation he learns in
this case is σ3 = ε1⊕ ε2⊕ ε3⊕ ε4. In order to see how this actually contains information
about the secret support Γ, we convert the notation:

σ3 = αi1 ⊕ αi2 ⊕ αi3 ⊕ αi4 ,

where the ij with j ∈ {1, . . . , 4} are the indexes in the error vector ~e that were set to
one by the attacker and the αi are the support elements.

Note that the highest possible rank for a homogeneous linear equation system describ-
ing a permutation of F2m is n − m, since there must be m linearly independent basis
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elements.

Attack Description By repeatedly measuring the decryption time for random “w = 4”
ciphertexts on the decryption device, a rank n−m− 1 linear equation system is built.
Our experimental results showed that this is the maximal rank that can be achieved in
this manner.

Afterwards, the index of the zero element, αz is determined through the “w = 1”
vulnerability. In the majority of the cases, this information increases the rank of the
equation system to n−m. In the rare cases, where the rank remains at n−m− 1, the
attack’s on-line and off-line complexity is increased by a factor of n.

In the following, we assume that we have an equation system of rank n−m. Accord-
ingly, by bringing the linear equation system into reduced row echelon form, we find that
the elements associated with the m rightmost columns must be a basis {βi}:

α0 α1 . . . αi . . . αn−m−3 αn−m−2 β0 . . . βm−1

1 0 . . . 0 . . . 0 0 X . . . X
...
0 0 . . . 1 . . . 0 0 X . . . X
...
0 0 . . . 0 . . . 0 1 X . . . X

Step 2 – Collecting cubic Equations

Theory At this point, for each element αi, we know the corresponding Bi with αi =∑
j∈Bi

βj , i.e. its representation in the chosen basis. If the values of all basis elements βi
were known, then the values of all αi would be set as well, and the support was recovered.
Accordingly, the next step in the attack is to collect cubic equations according to (4.8)
in a way that allows for efficient guessing or solving for the values of the βi. How this
is achieved is explained in the following. We start by showing how the cubic equations
are equations about the basis elements and what conditions the εi, i.e. the error vectors
the attacker uses for the creation of the ciphertexts, must satisfy.

First of all, we understand that each cubic equation that the attacker finds through
the vulnerability from Section 4.2.1.3 is generally an equation about the basis elements
βi: this is simply achieved by replacing each αi by its representation as the sum of basis
elements: αi =

∑
j∈Bi

βj with Bj known from the linear equation system.
Now we see that is already possible to ensure

0 = σ5 =

6∑
i=1

εi =
6∑
i=1

αji =
6∑
i=1

∑
k∈Bji

βk

when constructing the ciphertexts: Without knowing the concrete values of the basis
elements βi, we simply have to take care that all the basis elements in the sum in
the rightmost term are cancelled out. For this, the knowledge of the Bi is sufficient.
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label equations

C1 βs1(βg1 , βg2 , βg3)

C2 βs2(βs1 , βg1 , βg2 , βg3)

C3 βs3(βs2 , βs1 , βg1 , βg2 , βg3)
...

...

Cm−3 βsm−3(βsm−2 , βsm−1 , . . . , βg3)

Table 4.5.: Form of the equations about the basis elements that are collected with the
help of the w = 6 vulnerability.

As a result, ciphertexts that satisfy
∑6

i=1 εi = 0 have a much larger probability for
deg (Ω(Y )) = 0 than ciphertexts built with random w = 6 error vectors: for the latter,
this probability is in the domain of 1/n2, since two coefficients σ3 and σ5 must be
simultaneously zero. But since for our candidate ciphertexts σ5 = 0 is already ensured,
their probability for deg (Ω(Y )) = 0 is in the domain of 1/n. This reduces the on-line
effort of the attack enormously. This probability estimation is based on the assumption
that all coefficients of the error locator polynomial become zero with probability 1/n.

Next, we show how it is possible to collect cubic equations of the form (4.8), which can
be solved for one basis element efficiently. We label this basis element βsi . The simplest
type of equation that we can achieve are quadratic equations: because of the restriction
0 = σ5 =

∑6
i=1 εi = 0, the basis element βsi must be contained in at least two of the εi.

If exactly two of the εi contain βsi , we get a quadratic equation for βsi . Basic algebra
shows that if we label those two εj that contain βsi as ε1 and ε2, then from (4.8) we find
the following equation:

aβ2
si + bβsi + c = 0, (4.10)

with a =
∑6

j=3 εi, b = (ε1 + ε2)a, c = (ε1 − βsi)(ε2 − βsi)a+ (ε1 + ε2)
∑6

j=4

∑j−1
k=3 εjεk +∑6

j=5

∑j−1
k=4

∑k−1
l=3 εjεkεl (for clarity, in these formulas we provide “+” and “−” even

though both amount to “⊕” ). Such a quadratic equation has two solutions for βsi . This
is the type of equation that is used in the attack.

In order to be able to efficiently solve the system of these equations, we want to
minimize the brute force effort. We achieve this by building m − 3 sets of equations
over the βi of the form given in Table 4.5. This table has to be read as follows: The
first set of equations C1 contains equations for βs1 , which is one arbitrarily chosen basis
element. The type of equation represented by βs1(βg1 , βg2 , βg3) is of the form of (4.10)
and all the involved εi are built only from the basis elements {βs1 , βg1 , βg2 , βg3}. It is
not entirely correct to write βs1 as function of the other basis elements, since (4.10) has
two solutions. However, we use this notation for simplicity. The next set C2 contains
equations that determine a new basis element βs2 different from the four elements that
appear in the equations in C1. Here, βs2 is determined by the four basis elements that
appear in C1.

The solving of this equation system is the topic of the next step. However, in order to
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motivate the choice of these equations, we point out the basic idea behind it: A guess for
the first three elements βg1 , βg2 , βg3 , using C1, leads to the determination of the possible
values for βs1 . Using C2, we find the possible values for βs2 and so on. As we shall see, in
this process, some of the solutions to the quadratic equations will have to be classified as
invalid. Thus, certain “paths” of solutions die off as different “levels” Ci are processed.
As a result, each guess for the values of the elements βg1 , βg2 , βg3 leads to a (potentially
empty) set of solutions for all basis elements and thus to a guess for the whole support.

At this point, two remarks are appropriate: The reason why we start with an equation
where βs1 is dependent on exactly three other basis elements (and not fewer) is given in
Appendix A.1. The size of the Ci, which we refer to as ci, i.e. the number of equations
the specific set contains, will be addressed in the explanation of the next step of the
attack. For now, it is sufficient to know that the ci can be chosen to be different from
one another and that they are parameters of the attack.

We now summarize again all the above mentioned conditions that apply to the εi, and
thus the error positions that the attacker choses when preparing the ciphertexts with
w = 6.

1. εi ∈ span({βs1 , βg1 , βg2 , βg3}),

2.
∑6

i=1 εi = 0,

3. exactly two of the εi contain βs1 .

Attack Description Thus, the second step of the attack is carried out as follows: The
attacker creates ciphertexts that meet these three conditions, and inputs them into the
decryption device. From the timing of this operation, he identifies those ciphertexts
for which σ3 = 0. Whenever this happens, he registers an according equation of form
of (4.10). In this process, he first collects a specified number of equations that involve
four basis elements; this will yield the set of equations C1. Afterwards, he adds a fourth
element to the list of available basis elements and collects a specified number of equations
C2. He continues this process, until all m− 3 sets Ci sets are completed.

Step 3 – Solving

Theory In this step, the solving or guessing is performed. This means that the equa-
tions collected in the previous step about the basis elements βi are solved. Note that the
information in the linear equation system built in Step 1 has already been used to make
the conversion from the εi to the βi in (4.10) in Step 2, and thus is not further useful.

Note that during the guessing of the values of the basis elements, since we are looking
for linearly independent F2m elements, all new guesses that are linearly dependent on
basis elements that have already been guessed, are discarded.
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Attack Description The solving is performed by enumerating all the possible combina-
tions of the values of βg1 , βg2 and βg3 . Here, and for the subsequent guesses, we enforce
that

βgi /∈ span({βg1 , . . . , βgi−1}), (4.11)

by discarding inappropriate guesses or solutions. Here, we imply the convention βsi =
βgi+3 .

For each such combination of values for βg1 , βg2 , βg3 , the roots of each equation in C1

are potential candidates for the value of βs1 . However, additionally to the restriction
from (4.11), those roots that are found only for a subset of C1 are discarded.

The remaining roots are iterated over to find the possible solutions for βs2 by solving
the equations in C2, which in turn are used to compute the possible values of βs3 , etc.
Whenever in such a chain of guesses a solution for all βsi is found, a guess for the whole
support Γ = (αi|αi =

∑
j∈Bi

βj) is implied, which has to be checked by a means of
key recovery, as described in [18]. The attack is finished when such a key recovery is
successful.

The value of a choice ci = |Ci| > 1 lies in the following: The more equations are used
for the determination of the set of possible solutions of one specific βsi , the more likely it
is that none of them is passed on to the subsequent evaluation of Ci+1. Thus, the larger
the ci are chosen, the higher is the on-line effort of the attack (more cubic equations have
to be collected), but the off-line effort is reduced as the number of possible solutions for
each βsi is potentially decreased. By virtue of this effect, the employment of large values
for the ci allows to reduce the total number of the necessary key recoveries.

Example Figure 4.6 gives a sample run for very small values of the parameters c1 and
c2. We see that the equations in C1 are evaluated for the values x, y, z of the basis
elements βg1 , βg2 , βg3 . All three equations in C1 find the same two solutions a and b for
βs1 . Furthermore, they are both found to be linearly independent from x, y, z. Thus,
both of these values are valid candidates and must now be used to evaluate the equations
in C2. For the solution βs1 = a, the two equations in C2 yield only one value that is
in the intersection of their solutions, this is βs2 = d. Furthermore, this value is linearly
independent of the all the previously determined basis elements a, x, y, z. Thus, it is a
valid candidate and must be now evaluated for C3.

For the solution βs1 = b, the equations of C2 again yield two values f and h for βs2 ,
which are in the intersection of their solutions. However, it turns out that d is linearly
dependent of the previously determined basis elements and thus needs not be processed
further. However, d is again a valid solution and used for the evaluation of the equations
in C3.

4.2.1.7. Experimental Results

We successfully conducted the attack with the following measurement setup on an Intel
Core 2 Duo x86 platform: from the attack program, the decryption function was called
with the attack ciphertexts as input, and the decryption time was measured with the
CPU’s cycle counter.
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βg1 = x, βg2 = y, βg3 = z

C1,1 C1,2 C1,3

βs1 = a βs1 = b

a /∈ span({x, y, z})? b /∈ span({x, y, z})?

βs1 = a βs1 = b

true true

C2,1 C2,2 C2,1 C2,2

βs2 = c βs2 = d βs2 = e

d /∈ span({a, x, y, z})?

. . .

true

βs2 = f βs2 = h

f /∈ span({b, x, y, z})? h /∈ span({b, x, y, z})?

× . . .

false true

Figure 4.6.: Sample run of the solving of the equations about the basis elements for
c1 = 3 and c2 = 2. Here, the equations contained in Ci are enumerated as
Ci,1, Ci,2, . . ..
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Because the cycle counts measured for a deterministic operation of the duration of
a code-based decryption vary considerably on such CPUs, a specific strategy has to be
used to identify positives, which refers to ε1 = 0 for w = 1 and deg (Ω(Y )) = 0 for w = 4
and w = 6, i.e. those cases that yield an equation for the attacker. The timing behaviour
of a modern x86 CPUs like the Core2 Duo can be approximated through the following
model: for repeated executions of a fixed sequence of instructions, there is a hypothetical
constant cycle count (the minimal execution time for the instruction sequence), which is
increased by a random delay. This delay varies in each execution and ranges from zero
to a certain maximal value. Because in all three different attack types the positives,
from the algorithmic point of view, are executed faster than the negatives, the following
classification strategy can be used: Prior to the attack, a training phase is carried out
where the minimal cycle counts for positives are determined as well as the minimal cycle
counts for negatives (using a different secret key than during the attack). Then, the
threshold below which an operation is classified as a positive during the attack is set as
the mean of these two values. We refer to the distance between the minimal cycle counts
for positives and the minimal cycle counts for negatives as the cycles gap. Clearly, the
larger this gap the larger is the probability for finding positives. Furthermore, the above
approximate model for the cycle counts on the employed CPU is lacking other effects that
could be observed in our experiments: during the execution of the attack, the previously
determined maximal and minimal cycle counts for the two classes of operations seem to
be subject to an “upwards drift”, i.e. they tend to successively increase over time but
sometimes also drop again approximately to the initial levels after some time.

Table 4.6 summarizes the results for single attack runs with different code parameters.
The rows labeled “cycles gap . . . ” indicate the above discussed gaps. We found that gaps
of a couple of hundreds cycles that are characteristic for the w = 1 vulnerability tend
to cause problems in the detection of positives, i.e. in some runs, due to the mentioned
drift of the cycle counts, the zero support element could not be determined, while the
considerably larger gaps for the w = 4 and w = 6 vulnerabilities allow for reliable
detection of positives.

The rows labeled “number of queries . . . ” show the number of decryption operations
that had to be executed with ciphertexts created with error vectors of the respective
weight in the course of a single run of the attack.

“number of final verifications” is the number of the guesses for the complete support
that are output by the attack. We did not implement an actual verification, but simply
compared the guess for the support with the correct support Γ. As already mentioned,
in [18], the procedure that had to be used in a real life attack is described. It involves
only some linear algebra operations on the public key and the invocation of an EEA
and would not perceptibly increase the time for solving, given the small numbers of such
final verifications occurring in the attacks.

The time for the solving step is given in the last row. From the theory, one expects
an increase of the solving time by a factor of about eight for each increase of m by
one. The reason is that the number of initial guesses, i.e. the number of combinations
of values that can be chosen for βg1 , βg2 and βg3 is roughly n3, and all F2m operations,
including the solving of the quadratic equations [50] (4.10), are done with the help of
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m = 9, t = 33 m = 10, t = 40

cycles gap w = 1 ≈ 400 ≈ 600

cycles gap w = 4 ≈ 13, 000 ≈ 19, 000

cycles gap w = 6 ≈ 17, 000 ≈ 23, 000

number of queries for w = 1 (Step 1) 3,575,494 11,782,695

number of queries for w = 4 (Step 1) 1,517,253 2,869,424

number of queries for w = 6 (Step 2) 374,927 1,837,125

number of final verifications (Step 3) ≈ 8, 000 ≈ 2, 000

running time for solving on 1 GHz x86 CPU (Step 3) 3h 28h

Table 4.6.: Experimental results for single runs of the attack. Refer to the text for
explanations.

lookup tables, and thus are executed in constant time.

The number of equations collected per βsi were chosen as c1 = 1, c2 = 2, c3 = 4, i.e.
chosen as the double of the previous count, up to a maximal value of 16, i.e. ci = 16
for i ≥ 5. This choice was found to provide good solving times as well as a small
number of final verifications. However, we did not systematically search an optimal set
of parameters ci.

As previously mentioned, in the rare cases where the knowledge about the zero-element
of the support does not increase the rank of the equation system, Steps 2 and 3 would
have to be repeated about up to n times; for these cases stronger hardware would be
needed to keep the solving time in reasonable margins.

These results show first of all the practical relevance of the vulnerability concerning
local attacks, i.e. where the attacker has direct access to the decryption routines without
any delay. However, the sizes of the cycle gaps for the “w=4” and “w=6” are so large
that even network attacks seem possible: in [57], timing gaps between 10.000 and 20.000
cycles are exploited for a distinguishing attack over a network connection. Concerning
the amount of queries that is in the millions for our attack, it must be noted that in
other attacks considered in the literature far greater numbers are used: in [58] (not a
timing attack but purely a mathematical one), 230 ≈ 109 queries are needed for an attack
against RC4 in TLS.

4.2.1.8. Effect of Countermeasures against other Attacks

If the countermeasure proposed in Section 4.1.2.2 is incorporated in an implementation,
then the attack becomes even easier. This is because the countermeasure from Section
4.1.2.2 tremendously bloats the timing difference that is exploited in the attack. Specif-
ically, it will not alter the case of N = 0 on one hand, but will enforce the maximum
number of iterations (that would occur for w = t), instead of N = 1, on the other hand.
This is a direct consequence of the fact that this countermeasure resides in a way inside
the EEA loop, and will be skipped if that loop is skipped.
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4.2.1.9. Possible Extensions of the Attack

In this section, we give two possible extensions or improvements of the attack, the first
being useful if noisy timings are used and the second showing how a power analysis
attack could be used to retrieve the same information.

“n-3” Scans for the Linear Equations In attacks in other scenarios, for instance when
the attack is executed as a remote timing attack (over a network), the attacker may
be confronted with the problem of receiving only noisy measurements. This means for
our attack that the decision whether N = 0 or N = 1, based on a timing measurement
might be very difficult or impossible for a single timing. But for the retrieval of the
linear equations, it is possible for the attacker to conduct measurements on certain sets
containing n− 3 error vectors, where he knows that exactly one of the vectors in the set
causes N = 0. This is due to the following observation.

For every error vector of Hamming weight w = 4, we have σ3(a, b, c, d) = γa+γb+γc+γd
where a, b, c, d are all different values from {0, . . . , n − 1}. Now, take w.l.o.g., the sum
of three of these elements, γa + γb + γc. We now postulate that there always exists
some γd different from the former three elements, such that σ3(a, b, c, d) = 0. We prove
this postulate by showing that assuming the opposite statement leads to a contradiction.
Specifically, the non-existence of such a γd implies that the additive inverse of γa+γb+γc
is one out of the set {γa, γb, γc}. Since in a finite field of characteristic 2, each element
is its own additive inverse, this in turn would imply γa + γb + γc = γa, where the choice
of γa is w.l.o.g. But then we would have γb = γc, which is the contradiction we sought.
This also implies that the probability for N = 0 for a ciphertext with a random error
pattern with w = 4 is 1/(n− 3).

Thus, the attacker can proceed as follows: he fixes an error pattern of Hamming
weight w = 3 and produces the n− 3 vectors, which can be reached by adding one more
error position and uses them to create n−3 ciphertexts and measures the corresponding
decryption times. He can now use a maximum-likelihood strategy to determine the one
timing which corresponds to N = 0 iterations in the EEA. He can selectively repeat
measurements to increase the certainty of his decision if the amount of noise suggests
this.

Starting Point for a Power Analysis Attack. We now show how a potential power
analysis vulnerability emerges for the w = 4 ciphertexts, which allows to gain the same
information as from the timing vulnerability. From the invocation of Algorithm 9 from
Step 4 of Algorithm 1 and the considerations given in Section 4.2.1.2, it is clear that
in the case of N = 0 we have α(Y ) = τ(Y ), and thus, deg (τ(Y )) = 2 in Step 3 of
Algorithm 1. On the other hand, if N = 1, then we know that deg (τ(Y )) = t − 1,
because deg (β(Y )) = deg (q1(Y )) = 1 is the only possibility according to Algorithm 9.

This means, that in Step 3 of Algorithm 1, for N = 0, a large number of coefficients
turns out to be zero when the square root is computed. Since the Hamming weight of
registers or the number of the changed bits in a register are usual targets of a power
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analysis attack [59], one could expect that an unsecured implementation makes it possible
to distinguish between the cases N = 0 (i.e. σ3 = 0) and N = 1 (i.e. σ3 6= 0).

4.2.1.10. The Problem of Countermeasures

An effective countermeasure to protect against this attack has not been created. We
address this open problem in Section 6.2.

4.2.2. Timing Attacks against Root-Finding Algorithms

We now show that in the root-finding algorithm vulnerabilities can arise, which allow
attacks against the secret support of code-based PKCs. This is the case when the
running time of the root-finding algorithm depends on the values of the roots found. To
understand that this is a vulnerability, one has to consider that an attacker can create
ciphertexts with ~e known to him. Then, according to (2.1), any information about the
roots is information about the support Γ.

4.2.2.1. Vulnerability of eval-div-rf

One possible vulnerability arises if in eval-div-rf , presented in Section 3.3.2.1, the eval-
uation of σ(Y ) is done with Y being substituted in lexicographical order. In this case,
the found roots are later mapped to the corresponding Ei, i.e. the indexes of the bits
having value one in the error vector, by using a table for Γ−1. The timing effects of
this implementation choice are shown in Fig. 4.7(a) and 4.7(b). These figures depict
running times on an Atmel ATMega1284P AVR platform of the syndrome decoding with
eval-div-rf for n − (t − 1) error vectors created in the following way: a random error
pattern of weight t− 1 was fixed, and the position of the last error, Et, was varied over
the remaining free positions, resulting in error vectors with Hamming weight t. On the
x-axis, Et is shown. Henceforth, we will refer to this type of plot as “support scan”.
The result is a relatively clear linear ascent, which is not surprising when considering
the eval-div-rf algorithm: Starting evaluation at Y = 0, the earlier a root is found, the
more beneficial in terms of running time is the reduction of the degree of σ(Y ) by one
through the subsequent division. Thus, the task for an attacker amounts to bringing the
measured timings into an ascending ordering, giving him Γ. Obviously, there is some
distortion of this ordering in Fig. 4.7(a), which stems from other operations of variable
duration in the syndrome decoding. We leave it open whether in this manner the support
Γ becomes known to the attacker in its entirety, however, a large amount of information
about Γ becomes available.

This vulnerability can be avoided by performing the evaluation of σ(Y ) with Y being
substituted in the order α0, α1, . . . , αn−1. Note, however, that the vulnerable version
is slightly faster, since there only t table lookups in Γ−1 for the found roots are done,
whereas in the secure version n such lookups in Γ are necessary. Thus, the described
problem is realistic.

We also wish to point out that an attack exploiting this vulnerability, in contrast to
other previously published timing attacks [2, 3], cannot be detected: The ciphertext
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(a) Timing for the whole syndrome decoding with eval-div-rf .
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(b) Timing for the root-finding with eval-div-rf .

Figure 4.7.: Running times of eval-div-rf for n − (t − 1) ciphertexts, where t − 1 error
positions are fixed and the t − th position varies, with code parameters
n = 512 and t = 33.
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carries t errors and will pass the CCA2 integrity test. This is important, because the
other attacks, which cannot be carried out in a clandestine manner in this sense, can
be thwarted by countermeasures that detect the irregularity of the ciphertext, and for
instance add an enormous delay or enforce constant running time, if possible, on the
respective platform. In the presence of the threat of power analysis attacks, however,
such countermeasures would in most cases not suffice as adding delays after the actual
computation will most likely be detectable in the power trace.

This vulnerability extends naturally to the root-finding variant dcmp-div-rf . However,
since in this algorithm the error locator polynomial of reduced degree is only used after
its degree has been reduced by five, the information an attacker can collect about the
secret support is limited there.

4.2.2.2. Vulnerability of dcmp-rf

In dcmp-rf , there exists one minor potential vulnerability: this is the multiplication
by σ3 in (3.3). If σ3 = 0, then this multiplication is faster (no table lookups and
reduction modulo the multiplicative order is performed, refer to Section 3.3.1) than in
the general case. Another implementation choice is to precompute the logarithm of σ3

for a performance gain, then in the case of σ3 = 0, this multiplication has to be skipped.
However, the timing vulnerability is the same in both cases. The manifestation of this
vulnerability on the AVR platform is shown in Figure 4.8. Note that the countermeasure
from Section 4.1.2.2 prevents this vulnerability from being used for the low weight attacks
from Section 4.2.1, where it would be useful to further reduce the timings for σ3 =
0. This countermeasure ensures a fake error locator polynomial σ(Y ) of degree t; it
is triggered always for the ciphertexts in the low weight attacks. Thus, the use of
this vulnerability in these attacks is only a realistic assumption for an implementation
without the countermeasures from Section 4.1.2.2. Accordingly, we turn our attention
to the case of w = t, where this countermeasure is not triggered. In that case, the
information gained is, according to (2.1):

0 = σ3 = αE1αE2 . . . αEw−3 ⊕ αE1αE2 . . . αEw−4αEw ⊕ . . . ,

i.e. the sum of products of all possible combinations of w− 3 different support elements
associated with the respective error positions, where w is the error vector’s Hamming
weight, usually w = t. It is certainly not trivial to exploit this information; however, in
combination with other vulnerabilities, it might be useful to provide a means of verifying
guesses for Γ. The countermeasure to protect against this vulnerability is trivial and
comes at a low computational cost: it is realized by assigning the precomputed value
of the logarithm of σ3 a dummy value during the initialization phase of dcmp-div-rf if
σ3 = 0, and carrying out the multiplication Y 3σ3 with both operands in logarithmic
representation regardless of the value of σ3. Afterwards, a logical AND operation is
performed on the result with a mask having all bits set in case of σ3 6= 0 and having
value 0 otherwise.
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(a) Running times of the syndrome decoding without countermeasures to hide σ3 = 0 in
dcmp-rf . The outlier with smallest running time shows such a case.
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(b) Running times of the root-finding with dcmp-rf without countermeasures to hide σ3 = 0.
The outlier with smallest running time shows such a case.

Figure 4.8.: Running times of dcmp-rf for n − (t − 1) ciphertexts, where t − 1 error
positions are fixed and the t-th position Et varies.
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4.3. Fault Attacks

In this section, we point out software fault attack vulnerabilities in the decryption op-
eration of an existing open source implementation of the McEliece PKC [7].

A hardware fault attack [60] is given when an attacker can gain information about
internal values of computations through faults that he provokes by influencing the hard-
ware of the device. In a software fault attack, which is the type of attack we are
considering here, the attacker gains knowledge about internal values evaluating error
replies of the device as reaction to invalid input data.

The software fault attack vulnerabilities presented in this section are directly related to
the message-aimed timing vulnerabilities from Section 4.1. They differ from these only in
one aspect: the distinction of two different control flows is not achieved through a timing
analysis, but by evaluating error messages. This means that also the corresponding fault
attacks are naturally built from their timing attack counterparts.

We analyzed the HyMES open source implementation [20] with respect to such fault
attack vulnerabilities. We found two such vulnerabilities in the McEliece decryption,
which we present in the following sections.

4.3.1. Fault Attack Vulnerability revealing the Degree of the Error Locator
Polynomial

The first fault vulnerability enables fault attacks based on the timing attacks presented
in Section 4.1.2.1. All code relevant to the syndrome decoding in HyMES is found in
the file decrypt.c; all line numbers given in the following refer to this file. In line 270,
when deg (σ(Y )) 6= t, decryption is aborted with an error. This is only a problem if the
countermeasures proposed in Section 4.1.2.2 are not implemented (as it is the case in
the HyMES implementation). In this case, it allows message-aimed fault-attacks of the
type explained there: it is highly likely that w > t leads to deg (σ(Y )) = t, and always
that w < t leads to deg (σ(Y )) = w. In the timing attack, it is deduced from the timing
whether deg (σ(Y )) < t; in the corresponding fault attack an explicit error message
reveals this condition. If the countermeasure from Section 4.1.2.2 is implemented, then
this fault attack vulnerability is removed.

4.3.2. Fault Attack Vulnerability revealing Information about the Number
of Roots of the Error Locator Polynomial

In this section, we show that in the HyMES implementation there exists a vulnerability
that enables the timing attacks from Section 4.1.4 as fault attacks.

In line 276 of the file decrypt.c, if the root-finding did not return t roots, decryption
is also aborted with an error. This allows message-aimed fault attacks with the two-bit-
flip attack described earlier in Section 4.1.4: there, it is deduced from the timing whether
t roots or only a fraction of this are found during the decryption of a ciphertext. With
the fault attack vulnerability, in the case of t roots, the decryption is processed without
errors, and in case of less roots an error is returned. Accordingly, this enables fault
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attacks derived from the timing attack described in Section 4.1.4. Note that, according
to the results of that section, the number of roots remains an indicator for the value of
w even in the presence of the countermeasure given in Section 4.1.2.1. Accordingly, such
a check for the number of roots must not be present in a secure implementation.

4.4. Transferability of the Vulnerabilities and Countermeasures
to the Niederreiter PKC

In the following, we show that the attacks presented in Section 4.1, 4.2 and 4.3, which
were presented as attacks against the McEliece PKC are equally applicable to the Nieder-
reiter PKC. The attacks from Section 4.1 and 4.3 rely on the attacker’s ability to change
a single error position in the McEliece ciphertext. The equivalent procedure for the
Niederreiter PKC is the addition of a row of the public parity check matrix: given a
ciphertext ~z = H~et, the ciphertext ~z′ = ~z ⊕ H~vt = H(~e ⊕ ~v)t with ~v having exactly a
single non-zero entry is a syndrome corresponding to an error vector carrying either t−1
or t+ 1 errors; this is just the type of manipulation of ciphertexts that is needed in the
message-aimed attacks.

The transferability of the key-aimed attacks from Section 4.2 is also obvious, as the
attacker can create ciphertexts with error patterns of his choice just like in the case of
the McEliece PKC.

4.5. Relation of the Side Channel Vulnerabilities of Code-based
PKCs to those of other Cryptosystems

In the following, we analyze the relation of certain aspects of side channel issues in code-
based PKCs to those in other PKCs [5]. First, in Section 4.5.1, we put the message-aimed
side channel attacks introduced in Section 4.1 into a broader context. This allows us to
derive a methodology for the analysis of public key cryptosystems with homomorphic
properties with respect to message-aimed side channel attacks.

Then, in Section 4.5.2, we explain the situation of code-based PKCs with respect to
generic side channel countermeasures. We find that such a countermeasure can only be
realized with an increase in the security parameters.

4.5.1. Message-aimed Side Channel Attacks against Cryptosystems with
homomorphic Properties

We now put the message-aimed attacks given in Section 4.1 into a more general context;
specifically, we will show that these attacks share a number of features with the message-
aimed attacks against the RSA cryptosystem. As the common features of the attacks
against these two PKCs we find that both are carried out as timing attacks based
on (adaptively) chosen ciphertext attacks, where the timings reveal information about
certain properties of the message.
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The usefulness of the knowledge of the properties of the manipulated plaintexts is
given by the so-called homomorphic properties of the cryptosystems in question. A
homomorphic property is present when an equation of the type E(a) • E(b) = E(a� b) is
given, where E(x) denotes the encryption operation, and “•” and “�” indicate arbitrary
group operations. A homomorphic property is a special form of malleability [61]. This
latter property is given when any relations between the two ciphertexts can be produced
that cannot necessarily be expressed in a closed equation.

Homomorphic properties are sometimes desired, for instance in the context of elec-
tronic voting schemes [62]. Here, however, we are interested in exploitable properties
rather than useful ones. This allows us to work also with homomorphic properties that
can be characterized as faint or restricted and would never qualify for useful applications.
As we will see in the following, this is true for the McEliece cryptosystem.

We start with a review of the message-aimed side channel attacks against the RSA
cryptosystem in Section 4.5.1.1, then we show the homomorphic properties of both PKCs
in Section 4.5.1.2. In Section 4.5.1.3, we make a comparison between the vulnerabilities
underlying the message-aimed attacks against these cryptosystems. In Section 4.5.1.4,
we conclusively derive a methodology for the analysis of PKCs with homomorphic prop-
erties.

4.5.1.1. Manger’s Attack against RSA-OAEP

First, let us briefly review the famous RSA cryptosystem. The RSA private key consists
of the private exponent d, the public key is given by the modulus n and the public
exponent e. RSA encryption is performed by computing the ciphertext c = me mod n,
which is decrypted as m = cd mod n. The knowledge of the prime factors p, q with
pq = n is what enables the holder of the secret key to determine the correct private
exponent d.

In [63], James Manger proposes a message-aimed attack against RSA-OAEP [64].
RSA-OAEP is a conversion that makes the cryptosystem secure against adaptively cho-
sen ciphertext attacks. During the decryption operation, first, the RSA message rep-
resentative is computed by the RSA decryption operation, then the OAEP decoding is
applied to the encoded message representative. Manger’s attack is based on the fact that
during the OAEP decoding, two different checks are performed. The first one is directly
applied to the encoded RSA message: it is demanded that the message features at least
one octet less than the encoded public modulus. If this condition is violated, an error
shall be thrown. In the remainder of Section 4.5, we will speak of a supernumerary octet
in this case. Then, at a later stage in the OAEP decoding, the actual integrity check is
carried out, and if the final comparison of two hash values fails, a second error condition
is triggered. This latter error condition will always be triggered when a manipulated
ciphertext is decrypted. Manger points out that these two different error conditions
could be identified by an attacker if they either produce different error messages or the
associated timings can be distinguished. In contrast to older specifications [64], the cur-
rent version of the PKCS#1 specification [65] specifies the algorithm in such a way that
implementers will less likely introduce such vulnerabilities.
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Manger’s attack makes use of this distinction of error conditions in the following
way: The attacker creates manipulated versions of the ciphertext he wishes to decrypt.
Specifically, given the ciphertext c0, he chooses an integer f and computes

c′0 = fec0 mod n (4.12)

where e and n are the public exponent and modulus of the key that was used to encrypt
c0. The attack builds on the ability of the attacker to let the decryption device decrypt
the manipulated cipher text c′0 and learn whether m′0 = fm0 = c′d0 mod n has a super-
numerary octet in the sense described above. Let B be the smallest value of a message
m that features a supernumerary octet, then the information learned by the attacker
is whether fm0 mod n ≥ B is true or false. Repeating this with f chosen based on
previous outcomes, he can by and by narrow down the number of possible values of m0.
This is done with a specific strategy described in [63]. The details of this attack are not
necessary to understand the remainder of this section; the only important thing is the
source of the information gain.

In [66], it is discussed that other sources for timing differences based on the existence
of such a supernumerary octet can be found in the integer to octet string conversion that
precedes the OAEP decoding operation. This is due to the fact that these conversion
routines generally iterate over the octets of the encoded integer. The implementation of
this function in the Botan Library [67] is given in Listing 1 as an example.

335 void BigInt::binary_encode(byte output[]) const

336 {

337 const u32bit sig_bytes = bytes();

338 for(u32bit j = 0; j != sig_bytes; ++j)

339 output[sig_bytes-j-1] = byte_at(j);

340 }

Listing 1: The implementation of the integer encoding in Botan-1.9.7 located in the file
math/bigint/bigint.cpp.

Furthermore, in the same work it is shown that already the last operations in the
modular multi-precision integer arithmetic within the RSA decryption routine might
introduce small timing differences based on the number of significant octets.

Concerning such small timing differences, it is not always clear whether or under
which circumstances these are exploitable through a timing attack, since other sources
of timing differences in the decryption algorithm may introduce considerable noise into
the measurements. However, through simple or differential power analysis [22], the
running times of the individual operations may be observed in an isolated way, if these
operations can be distinguished in the power trace. In the above example, this means
that if the duration of the integer to octet string conversion can be concluded from the
power trace, an attack is possible. This idea can be applied to the other timing-related
vulnerabilities discussed in the following and will be assumed throughout the remainder
of Section 4.5 without explicitly mentioning it.
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4.5.1.2. Homomorphic Properties of RSA and the McEliece Cryptosystem

In this section, we show that both the message-aimed attacks against the RSA and
McEliece cryptosystems are based on their homomorphic properties. While the homo-
morphic properties of RSA are well known and their exploitation in the attack by Manger
is quite obvious, for the McEliece cryptosystem this may be worth pointing out in some
more detail.

The homomorphic property of the RSA cryptosystem is given by

E(m1)E(m2) = E(m1m2 mod n).

From (4.12), we see that the message-aimed attacks against RSA discussed previously
make use of this property.

As a matter of fact, the McEliece cryptosystem does not really have plain homo-
morphic properties. It can easily be modified to have somewhat restricted homomorphic
properties: if a t-error correcting code is used, but only error vectors e with wt (e) = bt/rc
are added to the codewords during the encryption operation, then we have the property

E(~v1)⊕ E(~v2) = E(~v1 ⊕ ~v2)

for up to r additions E(~v1)⊕ E(~v2) (4.13)

because ~v1Gp ⊕ ~e1 ⊕ ~v2Gp ⊕ ~e2 = (~v1 ⊕ ~v2)Gp ⊕ (~e1 ⊕ ~e2) with wt (~e1 ⊕ ~e2) ≤ t.
But for our purpose, it is more useful to view the error vector ~e as message. This view

is justified because knowing ~e allows anyone to recover ~v with acceptable effort1. Then,
we obviously have the same homomorphic property as in Equation (4.13). In this view,
the introduction of single bit flip errors in the ciphertext, as in the attacks outlined in
Section 4.1, can be interpreted as the addition of another ciphertext, i.e. an error vector
of Hamming weight one, according to Equation (4.13).

The reason that we can also attack a McEliece cryptosystem where wt (~e) = t is that
bit flips are homomorphic operations with a certain probability, i.e. when the overall
number of errors is not increased. From this perspective, it suffices if the attacker is able
to distinguish whether his manipulations are homomorphic operations or not.

4.5.1.3. Comparison of Message-aimed Side Channel Attacks against RSA and
McEliece

We now show the analogies between the messaged-aimed attacks against the RSA and
McEliece cryptosystems. The goal is to gain insights into the principles that enable this
type of side channel attack against public key cryptosystems.

With this motivation, we first turn our attention to the timing attack vulnerabilities
of the RSA and McEliece cryptosystems we already reviewed and introduced, in the
previous sections. We then take into account fault attacks and finally show how so-
called reaction attacks are related to the former two types of attack.

1Also, the McEliece cryptosystem could in fact be altered to actually encode the message in the error
vector only. In this case however, the Niederreiter [12] scheme would be more preferable.
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Timing Attacks Table 4.7 shows both the RSA and the McEliece decryption processes,
where we distinguish between the public key decryption routine, the encoding of the
message representative, and the CCA2 check, and indicate the subset of these operations
for each cryptosystem that exposes potential timing vulnerabilities. Both cryptosystems
share the property that, already during the public key decryption operation itself, there
are potential sources of timing differences based on those properties of the message
controlled by the attacker.

As we have seen in Section 4.5.1.1, for RSA, the first potential vulnerability is the final
operation in Zn. Timing related vulnerabilities (with respect to message-aimed attacks)
that reach back further into the RSA decryption operation are not known.

In the McEliece PKC, there are two parts of the decryption operation which reveal
the number of errors through e.g. the timing. These are, as previously discussed, the
key equation solving and the root finding (Steps 4 and 6 of Algorithm 1). Compared
to the corresponding vulnerabilities in the RSA cryptosystem, those of the McEliece
cryptosystem reach back considerably further into the decryption algorithm.

The next interesting step is the encoding of the message representative. Here, ac-
cording to [66], the encoding routine’s running time depends on the number of octets
needed to represent the RSA message. In the case of McEliece, such a vulnerability
is rather inconceivable in a reasonable implementation. The reason for this difference
is that for the encoding of an element of Zn, cryptographic libraries usually use their
standard multi-precision integer encoding routines2, while an intuitive encoding routine
for binary vectors will not strip leading zero octets. If, however, this latter assumption
is violated, then also the encoding of the message representative would be vulnerable in
the case of the McEliece cryptosystem.

The next step is the integrity check of the employed CCA2 conversion. Assuming
OAEP encoding for RSA, this operation is vulnerable to timing attacks according to [63]
if the implementation does not feature appropriate countermeasures. For the McEliece
cryptosystem, the conversions proposed in [36, 68] all employ a function “Conv−1”, which
converts the error vector to a multi-precision integer during the decryption operation.
We did not review any concrete propositions for the implementation of this function, but
obviously its running time may not depend on the Hamming weight of the error vector.
Apart from this open problem, the mentioned conversions do not introduce any obvious
potential side channel problems.

Fault Attacks Also referring to Table 4.7, we discuss which of the steps might be vul-
nerable to fault attacks that reveal a property of the message. For the RSA cryptosystem,
the OAEP decoding is basically the only operation that is potentially vulnerable to fault
attacks. This is because it is not conceivable that an implementer would implement
checks for the number of significant number of octets needed to represent the message
at earlier stages of the decryption operation.

In the case of McEliece, however, fault attack vulnerabilities may be present, as we

2As a matter of fact, cryptographic libraries usually do not even feature specific objects for the repre-
sentation of Zn elements, but use their multi-precision integers.
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General RSA-OAEP McEliece

Decryption
. . .

. . .
key equation solv-
ing EEA

Final Zn Opera-
tion

Root Finding

Message En-
coding

Encoding in Zn Encoding in Fn2

CCA2 Check OAEP Check appropriate
CCA2 Check

Table 4.7.: Comparison of the sources of critical timing differences in the RSA and
McEliece cryptosystems. Fields with a gray background indicate potentially
vulnerable algorithms.

have seen in Section 4.3. Concerning the CCA2-conversions proposed in [36, 68, 69], none
of them explicitly performs any checks on the number of errors during the decryption.
But there is one important caveat: the function “Conv−1”, already addressed in the
above section on timing attacks, is defined as a mapping from elements of Fn2 with
Hamming weight t to integers in the range from 0 to

(
n
t

)
− 1. In order to disable fault

attacks, this function may not refuse input vectors with a Hamming weight lower than
t.

Reaction Attacks For both the RSA and the McEliece cryptosystem, when no CCA2
conversion is applied, message-aimed adaptively chosen ciphertext attacks are known:
Bleichenbacher’s attack [70] concerning RSA and [71] concerning McEliece. While Blei-
chenbacher’s attack must be viewed as a fault attack, the attack against McEliece given
in [71] does not fall into this category. The attack is basically the same as the one
described in Section 4.1. But since no conversion is applied at all, it suffices that the
attacker can learn whether the decryption of a manipulated ciphertext led to the same
plaintext as the original ciphertext, which is the case when wt (e) ≤ t. This type of
attack, which relies on the observation of semantic reactions of the decrypting party, is
called reaction attack.

4.5.1.4. Methodology for the Analysis of public Key Cryptosystems with
homomorphic Properties

From the previous sections, we can derive the following simple methodology for the
analysis of public key cryptosystems with homomorphic properties: It must be analyzed
how any properties of the decrypted plaintext affect both the computations of the core
public key decryption routine, and the further computations that take the plaintext as
input. If such effects on the computation are observable through a side channel (for
instance conditional branching based on this property), then it is highly likely that an
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attack can be built. Specifically, one must find a way to control that property of the
plaintext through homomorphic manipulations of the ciphertext.

Furthermore, it is helpful to take known reaction or fault attacks into consideration,
since they likely might reappear as side channel attacks, as we have seen for the RSA
and McEliece PKC.

4.5.2. Blinding Countermeasures for Code-based Cryptosystems

Concerning side channel countermeasures, there is a fundamental difference between
RSA and code-based PKCs: while for the former, so-called blinding countermeasures are
possible, for the latter these are not possible without altering the algorithm specification,
as we shall see in this section. A blinding countermeasure is a random transformation
of the operation input, which is undone after the decryption (i.e. the exponentiation in
case of RSA). For purposes of illustration, Algorithm 12 shows RSA with base blinding
as a valid countermeasure against power analysis and timing attacks [21].

The problem for code based PKCs is that basically no transformation on the cipher-
text is known that commutes with the decryption operation. Referring again to the
homomorphic properties of both types of PKC, we see that the base blinding exploits
the homomorphic property of RSA. Thus, the equivalent transformation for a code-based
PKC is given by the addition of further error positions, which, certainly, is a homomor-
phic operation only if the total number of errors does not exceed t. Consequently, to
enable a blinding countermeasure in a code-based PKC, one would have to change the
algorithm specification: during the encryption, only t − 1 errors are added, and prior
to the standard decryption operation another “bit flip error” is applied, the position of
which should be the same for repeated decryptions of a certain ciphertext, but otherwise
appear as random, and thus should be pseudorandomly derived from the ciphertext and
a constant secret value (for instance a hash value of the secret key). This approach
would guarantee a pervasive alteration of the decryption operation, however it demands
an increase of security parameters to compensate for the lower error weight used during
encryption.

Algorithm 12 RSA decryption with base blinding side channel countermeasure

Input: RSA ciphertext c, modulus n, public exponent e and private exponent d
Output: RSA plaintext m
r ← random number
c′ ← rec mod n
m′ ← c′d mod n
m← m′r−1 mod n
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McEliece PKC

In this chapter, we present two embedded implementations of the McEliece PKC along
with various performance data.

5.1. A Flexible Platform independent Implementation of the
McEliece PKC

In this section, we describe a platform independent implementation of the McEliece PKC
providing considerable flexibility in the choice of algorithms used in the decryption.

5.1.1. Description of the Implementation

The implementation was created based on the HyMES open source implementation
[14, 20] of the McEliece scheme. The HyMES implementation can be considered the
state-of-the-art open source implementation of this PKC, putting an emphasis on com-
putation speed. It features the Berlekamp Trace Algorithm (BTA-rf ) as the root-finding
algorithm, uses a precomputed square root matrix for the computation of the square root
in F2m [Y ]\g(Y ) in Algorithm 1, Step 3 and lookup tables for the F2m operations. It de-
viates from the original McEliece specification by encoding information also in the error
vector. In [14], only code parameter sets with n = 2m are analysed; we found, however,
that HyMES also supports lengths n < 2m.

We removed from the HyMES implementation the encoding of information in the
error vector, as for the most widespread application of a PKC, which is the encryption
of symmetric keys, the message size of the original McEliece scheme is sufficient (see
Section 3.4.3) and the constant weight word encoding poses thus an unnecessary burden
in terms of code size. Further changes made to this implementation are the removal of a
number of fault attack vulnerabilities (see Section 4.3), the optimization of the existing
single root finding variant BTA-rf , the addition of further root finding variants (see
Section 3.3), and the implementation of the decryption without the parity check matrix
according to Section 3.2. Furthermore, the timing attack countermeasures described in
Section 4.1.2.2, and 4.2.2.2 were implemented.

5.1.2. Performance Results

Table 5.1 shows the performance measurement results of the McEliece decryption of our
McEliece implementation on an embedded Atmel AT32 AP7000 32-bit CPU mounted
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param. r.f. algo. time/ms memory usage / bytes
w/H w/o

H
only
r.f.

code private key &
F2m tables

stack heap

n =
1632,
t = 33,
74 bit
security

eval-rf 47 88 38 23,527 91,468 | 13,132 584 425
eval-div-rf 30 71 21 23,527 91,468 | 13,132 584 425

BTA-rf 36 77 27 28,745 91,468 | 13,132 1,744 3,975
BTZ2-rf 31 72 22 30,449 95,568 | 17,232 1,588 3,975
dcmp-rf 34 75 25 29,230 91,468 | 13,132 584 425

dcmp-div-
rf(1,19)

29 70 20 29,230 91,468 | 13,132 636 485

n =
2960,
t = 56,
122 bit
security

eval-rf 142 284 113 23,527 275,114 | 26,474 720 662
eval-div-rf 90 232 61 23,527 275,114 | 26,474 720 662

BTA-rf 100 242 71 28,745 275,114 | 26,474 1,984 9,266
BTZ2-rf 82 224 53 30,449 283,310 | 34,670 1,876 9,266
dcmp-rf 95 237 66 29,230 275,114 | 26,474 724 662

dcmp-div-
rf(1,19)

77 219 48 29,230 275,114 | 26,474 776 820

n =
6624,
t = 115,
244 bit
security

eval-rf 1,430 2,681 1,269 23,527 1,306,534 | 61,622 1,076 1,268
eval-div-rf 799 2,050 638 23,527 1,306,534 | 61,622 1,076 1,268

BTA-rf 500 1,751 339 28,745 1,306,534 | 61,622 2,444 32,542
BTZ2-rf 433 1,684 272 30,449 1,322,922 | 77,610 2,344 32,542
dcmp-rf 576 1,827 415 29,230 1,306,534 | 61,622 1,076 1,268

dcmp-div-
rf(3,19)

422 1,673 261 29,230 1,306,534 | 61,622 1,128 1,668

Table 5.1.: Performance results of the McEliece decryption on the AVR32 AP7000 CPU
for three different code-parameter sets. The column labels have to be inter-
preted as follows:
“param.”: the code parameters including the security level
“r.f. algo.”: the root-finding algorithm that is used during the decryption
“time / ms”: time of the respective operation in milliseconds
“w/H”: decryption with the use of the parity check matrix
“w/o H”: decryption without the parity check matrix
“only r.f.” root-finding operation during the decryption
“memory usage / bytes”: the usage of various types of memory
“code”: the program code
“private key & F2m tables”: the private key size including precomputations
with and without the parity check matrix
“stack”, “heap”: the usage of stack and heap memory (RAM) during the
program execution
Note that the provided code size encompasses encryption and decryption,
but not key generation. The timings are given for a CPU frequency of 30
MHz.
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on an ICnova AP7000 Base board running an embedded Linux. The source code was
compiled with GCC version 4.2.2-atmel.1.1.3.avr32linux.1 and compiler options

-O3 -march=ap -mcpu=ap7000 -fomit-frame-pointer -finline-functions

The timings were measured directly on the AP7000 running at 150 MHz. The timings
given in the table, however, are scaled down to a hypothetical CPU frequency of 30
MHz, as this is a typical smart card frequency. For all performance data, 50 runs were
executed: for the timings, the mean was taken, for the stack usage, the maximum was
taken (this is only relevant for BTA-rf and BTZ2-rf , the other root-finding variants lead
to deterministic stack usage of the decryption). The heap usage is constant for a given
parameter set for any specific algorithmic choice.

The three code parameter sets used in the performance measurement are proposed in
[52] for minimal public key sizes at a given security level. However, as already pointed
out in Section 3.3.3, there the addition of more than t errors is assumed, which is not
supported by our implementation. This implies a reduction of security for which we give
the respective lower bounds based on considerations given in Section 3.3.3.

In the second column of Table 5.1, we give the respective root-finding variant from
Section 3.3.2 employed during the decryption. In the next two columns, the running
times of the complete decryption is given with and without the parity check matrix.
The following column shows the running time of the root-finding alone. Comparing the
results of the two larger parameter sets with the ones given in Table 3.2 on an Intel
Core2 Duo U7600 CPU, we find considerable differences concerning the improvements
brought by the BTA-rf and dcmp-rf variants and the hybrid methods derived from
them over the primitive eval-rf and eval-div-rf : while for n = 2960, t = 56, on the Intel
CPU BTA-rf is about twice as fast as eval-div-rf , it is even slower than the latter on
the AP7000. Similarly, while three times faster than eval-div-rf on the Intel CPU, on
the AP7000 dcmp-rf is slower than eval-div-rf . However, for the largest parameter set,
on the AP7000, BTA-rf is again considerably faster than eval-div-rf , and, in contrast
to the results for the Intel CPU, it is also faster than dcmp-rf . The actual reasons
for this platform dependency of the performance ranking were not investigated; it is
however clear that both CPUs are fundamentally different, for instance the low-end
AP7000 features much lower clock rates (potentially reducing the cost of memory loads
and stores) and much less instruction level parallelism than the high end Intel processor.

The remaining columns provide memory usage measurements: The code size, which
is independent of the code-parameter choice, encompasses encryption and decryption,
but not key generation. Furthermore, for the variants employing division, the code size
is equal to the respective variant without division, since also in that case the function
implementing polynomial division was compiled as it only yields a minimal increase
of code size. The same applies to the code for computation of the syndrome with or
without the parity check matrix. The removal of unused code was only applied to larger
functional blocks that considerably affect the code size.

In the following column, the private key size in memory including precomputations
with and without the parity check matrix are given. On the evaluated platform, the
private key is held in RAM on the heap memory; however, since for instance on a smart
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card, it would be held in non-volatile memory, we separated it from the runtime heap
usage. BTZ2-rf is the only root-finding variant that needs more precomputations than
the other variants: as mentioned in Section 3.3.2.2, it makes use of a table with a size of
2n bytes. Note that the private key sizes given here incur management data, and thus
are slightly larger than those from Table 3.1.

What follows are peak stack and peak heap usage by the program during decryption,
excluding the input data (i.e. the ciphertext). Concerning the stack usage, however, the
given numbers are only approximate due to the way the measurement was performed: as
there is no memory profiler available for the AP7000 Linux platform, on any function call
(which is performed with an error handling C preprocessor macro basically anywhere
in the code anyway), the stack position was measured and the overall maximum was
tracked. This leaves leaf functions uncovered, meaning that the actual stack usage is
always larger than the measured one. But since there is no excessive stack usage in any
of the single functions, the inaccuracy can be estimated to be a few hundred bytes at
most. The heap usage only summarizes the maximum allocated memory, ignoring heap
management data.

Comparing the stack and heap usage of the different algorithms, we find that the
recursive structure of BTA-rf causes a considerably higher stack usage than the other
algorithms. The excessive heap usage, which must be ascribed to the precomputations
of this algorithm, is even more striking, and shows that it is not very suitable for the
use on typical smart card platforms, which usually feature less than 20kB of RAM.

In summary, we find that decryption using dcmp-rf provides promising results for
all parameter sets. For the lower two parameter sets, the decryption without the parity
check matrix is less than 300 ms, and thus acceptable for many purposes in the smart card
application context. This statement is made under the assumption that, in this context,
the primary constraint is that the decryption time should not perceptibly increase the
whole process of the private operation, which usually includes the PIN entry through
the user.

For the 244 bit parameters, we find that the same algorithmic choice causes a de-
cryption time of almost two seconds. Since for these parameters, the parity check has a
size of more than one megabyte, it is inconceivable to use this precomputation to speed
up the computation on resource-constrained devices. Thus, this parameter choice calls
for hardware support to speed up at least the most time consuming part, which is the
syndrome computation, here.1

Note that these timing results of our pure software implementation are very good
compared with the state-of-the-art smart cards implementing RSA decryption using
cryptographic coprocessors: The Infineon Technologies AG smart card controller family
supports RSA decryption with a modulus of 1024 bit in 136 ms [39]. However, according
to [72], for 256 bit security, which is close to that of our largest parameter set, one
would have to use a modulus of 15,360 bit. The linear increase of the computation
time due to the increased exponent size (by a factor of 15) alone already yields a time
of more than two seconds on that platform. However, the larger complexity of the

1This is obvious from the large difference between the timings with and without the parity check matrix.
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code parameters encryption time @ 30 MHz / ms public key size / bits

n = 1632, t = 33 12.4 460,647

n = 2960, t = 56 34.4 1,537,536

n = 6624, t = 115 154.5 7,667,855

Table 5.2.: Timings for the McEliece encryption on the AVR32 AP7000 CPU.

multiplication operations during the exponentiation would incur another tremendous
increase in computation time – given that one had a cryptographic coprocessor that is
able to handle operands of this size. Thus, our McEliece timing results for pure software
implementations already prove the clear superiority in terms of decryption time of the
scheme over RSA for high security parameter choices.

The stack and heap usage are both acceptable for decryption with dcmp-rf , even for
the large code parameters.

For the sake of completeness, we also give the running time of the encryption operation
in Table 5.2. However, it features no significant change compared to the original HyMES
implementation. The only difference is that the error vector is not derived from the
message, but created randomly. This implementation stores the public key in RAM;
it does not make use of the on-line public operation introduced in Section 3.1. The
memory usage of the encryption is rather irrelevant since beyond the error vector and
the ciphertext, no other intermediate values are involved. Thus, it will always be smaller
than that of the encryption.

5.2. A Smart Card Implementation of the McEliece PKC

Another implementation that was created in the course of this work is an implementation
on an actual smart card [4]. As the predecessor of the implementation given in Section
5.1, it provides no algorithmic alternatives in the decryption operation.

5.2.1. Description of the Implementation

The implementation employs the F2m of the HyMES open source implementation [20],
but it is independent otherwise. Concerning algorithm choices, however, there are a few
differences to the implementation presented in Section 5.1. First, the optimization with
respect to finite field representations (Section 3.3.1) were not applied to the smart card
implementation. It features only a single root-finding variant, which is eval-div-rf , is
restricted to code lengths n = 2m and performs the decryption with the parity check
matrix.

In contrast to the flexible implementation, it features a CCA2 conversion, namely
the one presented in [69]. The encryption and decryption algorithms of the resulting
CCA2-secure scheme are given in Algorithms 13 and 14.

The message and ciphertext sizes of this scheme are given in Table 5.3. The security
level is given with respect to the attack given in [52].
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Algorithm 13 McEliece - CCA2 secure encryption

Input: message ~m ∈ Fl2, public key Gpub

Output: ciphertext ~z ∈ Fn+2l
2

~u1 ← random (k − l)-bit string.
~u2 ← random l-bit string.
(~z1, ~e)← EGpub(~u1‖H(m‖~u2))

z ←

~z1 ‖ (H(~u1)⊕m)︸ ︷︷ ︸
~z2

‖ (~u2 ⊕H(e))︸ ︷︷ ︸
~z3



Algorithm 14 McEliece - CCA2 secure decryption

Input: ciphertext ~z = (~z1, ~z2, ~z3) ∈ Fn+2l
2 , secret key (P, g(X))

Output: decrypted message ~m ∈ Fl2
(~w,~e)← D(P,g(X))(~z1)
~r ← the first k − l bits of ~w
~h← the bits at k − l + 1, · · · , k of ~w.
~m← ~z2 ⊕H(~r)
if ~h = H(~m‖(H(~e)⊕ ~z3)) then

return ~m
else

return error
end if

n,t security
bits

message size in
byte

ciphertext size
in byte

1024,40 62 32 2 · 32 + 128 = 192

2048,50 102 32 2 · 32 + 256 = 320

Table 5.3.: Security parameter sets for the CCA2-secure McEliece PKC
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platform parameter
set

operation time time with-
out I/O

PC n = 1024,
t = 40

decryption 0.8 ms -

SLE76 “ decryption 0.98s 0.69s

PC n = 2048,
t = 50

decryption 1.6ms -

SLE76 “ decryption 1.52s 1.06s

Table 5.4.: Timings for the decryption operation of the McEliece PKC on a personal
computer and the SLE76 smart card

As hardware platform, we used an SLE76CF5120P controller out of the SLE76-family
[38] by Infineon Technologies AG. It features a 16 bit CPU based on the 80251 architec-
ture. It has a clock rate of 33 MHz and provides 12 kByte of RAM. It es equipped with
504 kByte of non-volatile memory (NVM, i.e. flash memory). It also features a unified
data and code cache of 1 kByte.

5.2.2. Performance Results

In Table 5.4, we give timings for the two parameter sets. For comparability, we also give
timings for the same operations on a PC. The computer is an Intel Core Duo T7300
2GHz running Linux with kernel version 2.6.24. The application uses the same source
code as the smart card implementation, compiled with GCC-4.1.3, optimization level
O2.

The column labeled “time” lists the overall timing including the data transmission to
and from the smart card. In the rightmost column, we provide the time that is used
by the mere computation on the card, excluding the transmission times. The gross bit
rate of the transmission is 9600 bit/s. Please note that the SLE76 hardware platform
generally supports much faster transmission rates than this.

We do not give any encryption timings, as the mere encryption timing is irrelevant on
a smart card platform, since in that case the approach given in Section 3.1, the on-line
public operation would have to be applied, as is discussed at length in the referenced
section. The timing results are less impressive than those from the implementation pre-
sented in Section 5.1. The main two reasons for this is the far less advanced algorithmic
choice in this implementation and the fact that the platform features only a 16 bit CPU.
However, for the parameters providing 102 bit security, which are of practical relevance,
we have decryption times in the order of one second, which can be considered sufficient
for certain applications. In this context, we wish to point out that a major improve-
ment of the decryption time should result from the replacement of 32 bit pointers used
throughout the code by 16 bit pointers. This is because the 16 bit CPU can handle the
smaller pointers much faster. But since, at least for the larger parameter set, the private
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resource space in 103 byte

RAM (m = 2048,t = 50) 4.4

RAM (n = 1024,t = 40) 3.4

NVM code 45

NVM private key (n=1024,t=40) 60

NVM private key (n=2048,t=50) 151

NVM F210 lookup tables 4

NVM F211 lookup tables 8

Table 5.5.: Resource demands of the McEliece PKC smart card implementation with
accuracy of 100 byte for RAM and 1000 byte for NVM

key size exceeds the 16 bit addressable area, this could only be achieved with the usage
of the Memory Management Unit (MMU) available on the SLE76 platform.

In Table 5.5, we give the resource demands for the decryption operation, i.e. the
RAM and non-volatile memory (NVM) space needed by the implementation. Again,
we distinguish the two parameter sets. The demanded RAM size is made up of a fixed
stack size of 1024 bytes and the peak amount of allocated heap memory. The main
contribution to the private key size stems from the parity check matrix H, which makes
up about 143, 000 bytes in case of m = 11, t = 50 and about 53, 000 bytes for m = 10,
t = 40. This corresponds to portions of 95% and 88%, respectively. Please note that in
addition to the raw matrix data, the given sizes also include certain management data
overhead.
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In this chapter, we address research problems that remain open in this thesis. Their
solutions will become relevant at the point where concrete implementation choices of
code-based PKCs are evaluated for the suitability in real world applications.

6.1. Potential Cache-Timing Vulnerabilities in Code-Based
Decryption Operations

Cache-timing attacks against AES [23] are well known. In these attacks, so-called cache
collisions in the lookup tables, which make AES software implementation fast, are ex-
ploited: when a table entry is accessed, and is found in the same cache line as a previously
accessed entry, then this entry will be loaded faster, as it is already contained in the
cache.

Since the F2m operations are implemented in terms of lookup tables (refer to Section
3.3.1), the danger of cache-timing attacks is potentially given for code-based PKCs as
well. However, so far no concrete attacks of this type have been proposed against these
schemes. The main reason for this can be seen in the fact that unlike in the case of AES,
at least in an implementation using the parity check matrix, neither are the operands
of the F2m operations controllable through the input nor does the plaintext contain
immediate results of these operations. Also, a multitude of other timing differences,
for instance the variable number of iterations in the EEA applications and furthermore
their variable complexity must be assumed to considerably veil the targeted cache-timing
effects of a hypothetical attack. Thus, it remains an open question, whether cache-timing
attacks against the finite field arithmetics are possible or not in code-based PKCs.

The same question applies to the vulnerability of the lookups into the table for support
Γ and Γ−1, respectively. While, in principle, shorter timings can be assumed if more
lookups in the same cache line are performed, also here, other timing effects in the
code-based decryption operation greatly veil this potential vulnerability.

6.2. Countermeasures Against the Low-Weight Error Vector
Attacks

The question of countermeasures against the attack presented in Section 4.2.1 has not
been explicitly addressed in this work, but three possibilities are suggested here: The
first is a generic countermeasure against timing attacks that works if a platform provides
the program with exact control of timing delays in the algorithm. Given this control,
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upon detection of a number of roots that is smaller than t/2, the program can simply
enforce a previously determined worst case running time for these cases, thus providing
no information to the attacker. One disadvantage of this approach is its insufficiency
against power analysis attacks, because the distinction of an artificial delay from the
actual decryption operation from the power trace seems highly likely, and thus this type
of attack is not mitigated by the countermeasure. Another problem is that the worst case
running time (be it in terms of cycles or time) is highly platform dependent and must
be determined at run time rather than compilation time in a universal implementation.
If this value shall be available for the next program invocation, the implementation of
the cryptographic algorithm must have access to the device’s non-volatile memory (e.g.
the hard disk), complicating the integration of the implementation.

The second would be similar to the countermeasures given in Section 4.1.2.2 against
the attack presented in Section 4.1.2.1, where “premature” abortion of the key equation
solving EEA is prevented by enforcing the “missing” iterations. This is, however, a
delicate undertaking, as even the smallest timing differences have to be prohibited, and
thus the complexity of the individual iterations must be accounted for (consider for
instance the “w = 1 attacks” from Section 4.2.1.5).

The third option would be to use the blinding-like countermeasure for code-based
PKCs proposed in Section 4.5.2. This would be the simplest option providing security
against key-aimed timing attacks, and in principle also against related power analysis
attacks. However, another open question is that of the compatibility of the blinding-
like countermeasure with the countermeasure from Section 4.1.2.2, which defeats the
message-aimed attacks in the key equation solving EEA: this latter countermeasure
relies on a proper ciphertext featuring exactly t errors, which is not guaranteed anymore
in case the blinding-like countermeasure proposed in Section 4.5.2 is applied.

6.3. Side Channel Security of BTA-rf

We applied an analogous analysis to that of Section 4.1.1 to BTA-rf as realized in the
HyMES [20] open source implementation of the McEliece scheme on the ATMega1284P
platform. The timing results of the scan across different error weights given in Figure 6.1
show that the mean of the running times for w = t is below most of the minimal values
of sets for w 6= t, clearly indicating a vulnerability. Obviously, the recursive algorithm
behaves differently when σ(Y ) has considerably fewer than t roots (the countermeasures
from Section 4.1.2.2 lead to this also for w < t). Thus, message-aimed timing attacks
similar to those from Section 4.1.2 are possible. The actual reasons for this behaviour
as well as the question of countermeasures remain open.

Figure 6.2 shows the plots of the dependencies of the running time of the root-finding
with BTA-rf on the position of a single error bit. The plots were created in the same
way as those given in Figure 4.8 in Section 4.2.2.2. We see some “clouding” effect in
the running times, which is also apparent for timings of the whole syndrome decoding,
as shown in Fig. 6.2(a). It is obvious that these running times are neither constant nor
random. There seems to be a tendency to build “clouds”, by which we mean that it
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Figure 6.1.: Cycle counts taken on an ATMega1284P for the BTA-rf algorithm with
parameters n = 512 and t = 33. The error bars denote minimal and maximal
values, the center mark represents the mean. For each value of w, 30 different
syndromes were decoded.
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seems like an attacker should be able to build hypotheses that if for two different values
of E1 and E2 the timings are close to each other, then also αE1 and αE2 have close values
in their lexicographical interpretation as numbers.

Note for instance the values of Et below 100 in 6.2(a), which have consequently lower
timings than 3.04 · 106. Though such a dramatic effect was not obvious in all support
scans we conducted, it corroborates the notion of “clouding” effects in the timings for
BTA-rf . Thus, we strongly suggest that the running time properties of the BTA-rf be
subject to thorough analysis before considering its use in real world implementations of
code-based schemes.

6.4. Side-Channel Secure Implementation of dcmp-div-rf

Since on both evaluated platforms, the x86, an Intel Core2 Duo CPU, and the Atmel
AVR32 AP7000, dcmp-div-rf turns out to be the fastest, it would be interesting to have
a side channel secure implementation of this algorithm, i.e. remove the vulnerabilities
presented in Sections 4.1.1 and 4.2.2.1 for eval-div-rf , which extend to dcmp-div-rf .

Concerning the message-aimed attacks from Section 4.1.1, which build on distinguish-
ing the root-finding execution for an error locator polynomial σ(Y ) of degree t having
t roots or only a fraction of this based on the timing, a generic countermeasure could
in principle be implemented on certain platforms: the worst case running time of the
root-finding for a proper ciphertext, which we shall refer to as Tproper, had to be de-
termined. Then, for a proper ciphertext, after the completion of the root-finding, an
artificial delay had to be created until Tproper is reached. Else, for an irregular ciphertext,
the root-finding is broken after Tproper and some previously determined fake set of roots
is returned. Note that the distinction of proper and improper ciphertexts at this point
is only implicitly given through the number of actual roots of σ(Y ) of degree t.

One problem of this approach is that it can hardly be used to defeat power-analysis
attacks, as the distinction of the execution of the continued root-finding or the artificial
delay from the power trace is most likely possible. But for the case where merely timing
attacks are addressed, there is also a fundamental problem: this is the determination
of Tproper. This worst case running time would be given by the ciphertext where the
t roots are found at the very end of the evaluation. This means that the first n − t
evaluations find no roots at all, and thus there is almost no speedup in contrast to
the sole evaluation method without division (dcmp-rf or eval-rf , this analysis equally
applies to both). Consequently, in order not to lose the speedup gained by the division,
the worst case distribution of the roots underlying the determination of Tproper must be
adjusted. This, however, means that there will be valid ciphertexts that are rejected
by the decryption routine, which is clearly an undesirable feature. The only way to
circumvent this problem is to enforce the worst case running time only after the CCA2
integrity check has failed.

The defence against the key-aimed attacks presented in Section 4.2.2.1 also poses a
problem: while for eval-div-rf , as explained there, the vulnerability can be completely
avoided if the evaluation is performed in the order α0, α1, . . . , αn−1, this is not so simple
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(a) Timings for syndrome decoding with BTA-rf .
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(b) Timings for root-finding with BTA-rf .

Figure 6.2.: Running times of BTA-rf for n−(t−1) ciphertexts, where t−1 error positions
are fixed and the t− th position varies, with code parameters n = 512 and
t = 33.
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for dcmp-div-rf . The reason is that, in this order of evaluation, a Gray code is not given
in general. Thus, the question arises, whether sufficient security against mathematical
attacks could be achieved by restricting the choices for the support Γ by demanding that
it in whole or in parts be in Gray-code ordering.

6.5. The Problem of the Optimal Root-Finding Algorithm for
Embedded Implementations with Hardware Support

Another task in the course of preparing code-based PKCs for real world applications is
the implementation of code-based cryptosystems on smart cards and related platforms.
Since code-based schemes are, if they will ever be used in the field, prone to high security
applications, it is important that smart cards achieve practical running times for code
parameters providing 256 bit security or higher. From the results of Section 5.1.2, we
find that in order to achieve this, hardware support would have to be present on these
platforms, as it is the case for RSA and elliptic curve based algorithms today. Thus,
in view of the efficiency issues presented in Section 3.3 and the root-finding related
side channel problems analysed in Section 4, the real question is that of an optimal
choice of algorithms and hardware support, achieving both good performance and side-
channel security on these platforms. In this context, among other aspects, it will become
relevant how easily an algorithm can be parallelised. Note that eval-rf , eval-div-rf , and
dcmp-rf can easily be parallelised by starting independent evaluations at equally distant
offsets into F2m (in the Gray-Code order for dcmp-rf ). However, the circuitry for any
single instance of an eval-rf evaluator would be considerably simpler than for dcmp-
rf . The parallelisation of BTA-rf seems the most complicated; it would have to be
applied to the recursive structure of the algorithm. In view of these open questions, we
encourage future research investigating implementations with efficient hardware support
on resource constrained platforms.
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In this thesis, we have presented various improvements to the efficiency of code-based
PKCs as well as side channel vulnerabilities in these cryptosystems and corresponding
countermeasures. Concerning efficiency issues, we have shown that on embedded systems
such as smart cards, the speed of the code-based public key encryption operation with
the McEliece or Niederreiter scheme is limited by the transmission speed towards the
embedded device. This is an important point, because unlike for the algorithmic tasks of
the decryption operation, it is not possible to simply add sufficient hardware support to
reach a desired timing of the operation. The change of an interface of a smart card always
incurs the upgrade of the smart card reader infrastructure, thus posing a potentially far
more costly undertaking than the development and rollout of a smart card featuring a
new cryptographic coprocessor. Also, we have shown that the parity check matrix as a
precomputed value for the McEliece decryption is not necessary to achieve competitive
computation times, and thus a large amount of non-volatile memory can be saved on
embedded devices implementing this scheme.

Furthermore, we have presented a comparison of known root-finding algorithms as well
as new hybrid variants in terms of performance, and a discussion of their security. Being
the only part of the code-based PKC decryption operation that allows for a significant
algorithmic variety, it is an important choice to make in any implementation. We chose
to use code-parameters that minimize the public key size for a given security level in
this evaluation, because we believe that this is the most problematic aspect of these
cryptosystems. Thus, we believe to have provided a significant contribution concerning
PC and embedded software implementations of code-based cryptosystems, which can be
followed up on by hardware solutions for embedded devices.

Concerning side-channel security, we have shown a multitude of timing side channel
vulnerabilities. Besides the various problems that can result from certain algorithms for
the task of the root-finding, we pointed out timing vulnerabilities in the key equation
solving EEA and evaluation of the error locator polynomial that allow practical attacks
targeting the message. Furthermore, we provided a practical timing attack employing
three different types of vulnerabilities allowing the recovery of the secret key. We also
addressed the problems of fault attack vulnerabilities in an actual implementation of the
McEliece PKC.

Concluding our contributions, we presented two embedded implementations, providing
the memory demands and timing performances of the various implementation alterna-
tives analysed and developed in this work. This provides a profound basis for the choice
of the platform and algorithms for the implementation of the McEliece or Niederreiter
PKC.

Finally, we addressed remaining open problems, which pose further research questions
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that, in our opinion, should be addressed in the course of the evaluation of the suitability
of code-based PKCs as a solution for data protection in a post-quantum cryptographic
world.

90



Bibliography

[1] Strenzke, F., Tews, E., Molter, H., Overbeck, R., Shoufan, A.: Side Channels in
the McEliece PKC. In Buchmann, J., Ding, J., eds.: Post-Quantum Cryptography.
Volume 5299 of Lecture Notes in Computer Science., Springer Berlin / Heidelberg
(2008) 216–229

[2] Shoufan, A., Strenzke, F., Molter, H., Stöttinger, M.: A Timing Attack against
Patterson Algorithm in the McEliece PKC. In Lee, D., Hong, S., eds.: Information,
Security and Cryptology - ICISC 2009. Volume 5984 of Lecture Notes in Computer
Science., Springer Berlin / Heidelberg (2009) 161–175

[3] Strenzke, F.: A Timing Attack against the secret Permutation in the McEliece
PKC. In: The third international Workshop on Post-Quantum Cryptography
PQCRYPTO 2010, Lecture Notes in Computer Science

[4] Strenzke, F.: A Smart Card Implementation of the McEliece PKC. In: Infor-
mation Security Theory and Practices. Security and Privacy of Pervasive Systems
and Smart Devices. Volume 6033 of Lecture Notes in Computer Science., Springer
Berlin / Heidelberg (2010) 47–59

[5] Strenzke, F.: Message-aimed Side Channel and Fault Attacks against Public Key
Cryptosystems with homomorphic Properties. Journal of cryptographic Engineer-
ing (2011) DOI: 10.1007/s13389-011-0020-0; a preliminary version appeared at
COSADE 2011 .

[6] Molter, H.G., Stöttinger, M., Shoufan, A., Strenzke, F.: A Simple Power Analy-
sis Attack on a McEliece Cryptoprocessor. Journal of Cryptographic Engineering
(2011)

[7] Strenzke, F.: Fast and secure root finding for code-based cryptosystems. In
Pieprzyk, J., Sadeghi, A.R., Manulis, M., eds.: Cryptology and Network Secu-
rity, CANS 2012. Volume 7712 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2012) 232–246

[8] Strenzke, F.: Solutions for the Storage Problem of McEliece Public and Private
Keys on Memory-Constrained Platforms. In: Proceedings of the 15th international
conference on Information Security, ISC 2012. Lecture Notes in Computer Science,
Berlin, Heidelberg, Springer-Verlag (2012) 120–135

[9] Strenzke, F.: Timing Attacks against the Syndrome Inversion in Code-Based Cryp-
tosystems. In Gaborit, P., ed.: Post-Quantum Cryptography. Volume 7932 of Lec-
ture Notes in Computer Science., Springer Berlin Heidelberg (2013) 217–230

91



Bibliography

[10] Peter W. Shor: Polynomial Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing 26(5) (1997)
1484–1509

[11] R. J. McEliece: A Public Key Cryptosystem Based on Algebraic Coding Theory.
DSN progress report 42–44 (1978) 114–116

[12] Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. In:
Problems Control Inform. Theory. Volume Vol. 15, number 2. (1986) 159–166

[13] Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography. Springer
Publishing Company, Incorporated (2008)

[14] Biswas, B., Sendrier, N.: McEliece Cryptosystem Implementation: Theory and
Practice. In: PQCrypto. (2008) 47–62

[15] Heyse, S.: Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcon-
trollers. In Sendrier, N., ed.: Post-Quantum Cryptography. Volume 6061 of Lecture
Notes in Computer Science., Springer Berlin / Heidelberg (2010) 165–181
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A. Appendix

A.1. Cubic Equations involving less than four Basis Elements
are impossible

In this section, we show a feature about the key-aimed timing attacks introduced in
Section 4.2.1.6: It is not possible to have an equation of the form (4.10) where the
εi contain only three basis elements and fulfil all the conditions about the εi given in
Section 4.2.1.6. Specifically, in the following, we try to build an equation for C1 of the
form βs1(βg1 , βg2) and show that it is not possible to satisfy all these conditions with the
eight different εi that can be created from three basis elements:

• βs1 appears exactly in ε1 and ε2. For them to be different, we need to add at least
one further basis element to one of them.

• Since βs1 may not appear in any of the other four εi, they must be built from the
combinations of βg1 and βg2 . There are four such combinations so that we can
build the remaining four different εi.

• But now the condition
∑6

i=1 εi = 0 is violated, since the count of βg1 across all εi
is odd. From Table A.1, we see that (from an arbitrarily chosen point of view) the
βg1 that is contained in ε2 is unmatched. Any attempt to create an even count of
βg1 violates another condition.

βs1 βg1 βg2
ε1 x

ε2 x X

ε3 x

ε4 x

ε5 x x

ε6

Table A.1.: Example of the attempt to build a cubic equation using only three basis
elements. An “x” mark denotes that the basis element is contained in the
respective εi.
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