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Abstract. While it is generally believed that due to their large public
and private key sizes code based public key schemes like the McEliece
PKC cannot be conveniently implemented on memory-constrained de-
vices, we demonstrate otherwise. We show that for the public key we
face rather a transmission problem than a storage problem: we propose
an approach for Public Key Infrastructure (PKI) scenarios which to-
tally eliminates the need to store public keys of communication part-
ners. Instead, all the necessary computation steps are performed during
the transmission of the key. We show the feasibility of the approach
through an example implementation and give arguments that it will be
possible for a smart card controller to carry out the associated compu-
tations fast enough to sustain the transmission rates of possible future
high speed contactless interfaces. Concerning the McEliece private key,
we demonstrate, contrasting to previously published implementations,
that the parity check matrix, which is by far the largest part of this key,
is not necessary to achieve fast decryption on embedded systems.
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1 Introduction

Code-based cryptography, i.e. the class of cryptographic schemes built on er-
ror correcting codes, encompasses public key encryption schemes [1,2] as well as
signature schemes [3,4] and an identification scheme [5]. The main advantage of
code-based cryptographic schemes over currently used schemes that are based on
the factoring or discrete logarithm problem is their believed security in the pres-
ence of quantum computers [6], but at least the encryption schemes’ operations
can also be implemented comparatively fast [7].

However, the large public key size in these schemes are considered a tremen-
dous disadvantage. For this reason, a number of attempts have been made to
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reduce the public key size by using special codes [8,9,10]. But some of these at-
tempts have already been shown to result in insecure cryptosystems [11,12,13].
All recent proposals that reduce the key size using other codes than in the origi-
nal McEliece scheme will have to prevail for some time until they can be granted
the same trust as the original scheme, employing classical binary Goppa codes
[14], the security of which is still unquestioned after more than 30 years – how-
ever, with the exception of certain choices of code parameters [15], which are
only of relevance for code-based signature schemes [3].

Accordingly, in the first part of the work, we address the problem of per-
forming the public operations, i.e. encryption or signature verification, of con-
ventional code-based public key cryptosystems with large public keys on devices
with limited memory resources, like for instance smart cards. Typically, smart
cards have less than 20 KB of RAM, while the available amount of non-volatile
memory (NVM), e.g. flash-memory, can be as large as 512 KB [16,17]. If a public
key of a communication partner shall be temporarily stored on the device for the
purpose of performing e.g. an encryption, it would have to be stored in the NVM
since it exceeds the size of the RAM many times over. Specifically, the public
keys will be at least 100 KB large for reasonable security parameters, as we will
see in Section 2.2. For instance, the works [18,19,20] all describe implementations
of code-based encryption schemes on embedded devices, where the public key is
stored in the devices NVM. The drawbacks of storing such an amount of data
in the device’s NVM are first of all the cost of keeping such a large amount of
memory available for this purpose and also the much slower writing speed com-
pared to RAM access. In order to circumvent these problems, we show in this
work that the public operations can be executed by only storing very small parts
of the public keys at any given time during the operation. Our approach also
considers that these operations are always carried out in a PKI context, which
implies the verification of user public key certificates against issuer certificates.
We point out that this approach is equally usable for the Niederreiter PKC as
well as certain code-based signature schemes.

The second part of this work shows a solution for the McEliece private key,
which in previously published implementations [21,18,19,22] of the McEliece
PKC features the parity check matrix, the size of which is similar to that of
the McEliece public key. The benefit of the parity check matrix, which is not
an essential part of the private key, but a precomputation that allows faster
computation of the so called syndrome vector. We show that an optimized im-
plementation of the syndrome computation allows practical decryption times
without this matrix, reducing the private key size dramatically.

2 Preliminaries

2.1 Public Key Cryptography

In a public key infrastructure, the trustworthiness of a public key is always veri-
fied against a trust anchor. From the trust anchor, which is usually a certification



authority (CA) certificate, to the user certificate, there is a certificate chain in-
volved. The trustworthiness of a certificate lower in the chain is guaranteed by
its authentic digital signature created by the respective issuer, verifiable via the
corresponding public key contained in the issuer certificate.

For the case of public key encryption, it means that a user A’s public key
intended for encryption is contained in the user certificate. A user B willing to
encrypt a message for A thus goes through the following steps:

1. retrieve A’s public encryption certificate Enc-Cert A (for example by access-
ing a database or asking A directly)

2. verify the authenticity of Enc-Cert A by checking the signature on the cer-
tificate against the trust anchor (CA certificate)

3. encrypt the secret message using Enc-Cert A and send it to A

Since in this work we will address problems and solutions for embedded
devices such as smart cards, we wish to point out why it is necessary to be able to
carry out not only the private operations of a public key scheme (i.e. decryption
or signature generation) but also the public operations on such devices. One
application are key exchange schemes. Key exchange schemes based on public
key cryptography are used for instance in the context of the German ePassport
[23]. There, an elliptic curve based key agreement scheme is realized [24]. In order
to replace this scheme with a quantum computer secure solution, one would have
to combine a public key encryption scheme with a public key signature scheme
that both have this property. Then, one party sends the signed and encrypted
symmetric key to the other party. In the mentioned context this means that
eventually the ePassport’s chip has to carry out the encryption operation.

2.2 Code-based Encryption Schemes

In the following, we explain two code-based encryption schemes, where we focus
on the encryption operation and those parts of the decryption operation that
are relevant for the understanding of this work.

Both code-based encryption schemes employ irreducible binary Goppa Codes
[14] as error correcting codes.

Definition 1. Let the polynomial g(Y ) =
∑t
i=0 giY

i ∈ F2m [Y ] be monic and
irreducible over F2m [Y ], and let m, t be positive integers. Then g(Y ) is called a
Goppa polynomial (for an irreducible binary Goppa code).

Then an irreducible binary Goppa code is defined as C(Γ, g(Y )) = {c ∈
Fn2 |Sc(Y ) :=

∑n−1
i=0

ci
Y−αi

= 0 mod g(Y )}, where n 6 2m, Sc(Y ) is the syn-
drome of c, Γ = {αi|i = 0, . . . , n− 1}, the support of the code, where the αi are
pairwise distinct elements of F2m , and ci are the entries of the vector c.

The code defined in such way has length n (i.e. the length of the code words),
dimension k > n−mt (i.e. the length of the message words) and can correct up
to t bit flip errors.

As for any linear error correcting code, for a Goppa code there exists a
generator matrix G ∈ Fn×k2 and a parity check matrix H ∈ Fmt×n2 [25]. Given



these matrices, a message v ∈ Fk2 can be encoded into a codeword c of the code
by computing c = vG, and the syndrome s ∈ Fmt2 of a (potentially distorted)
codeword can be computed as s = cHT . Here, we do not give the formulas for the
computation of these matrices as they are of no importance for the understanding
of the topics of this work. The interested reader, however, is referred to [25].

The first encryption scheme we present is the McEliece [1] scheme.

Overview of the McEliece PKC. In this section we give a brief overview of the
McEliece PKC.

Algorithm 1 The McEliece encryption Operation

Require: the McEliece public key Gp ∈ Fk×n
2 and the message m ∈ Fk

2 ,
Ensure: the ciphertext z ∈ Fn

2

1: create a random binary vector e ∈ Fn
2 with Hamming weight wt (e) = t

2: z ← mGp ⊕ e

The McEliece secret key consists of the Goppa polynomial g(Y ) of degree t
and the support Γ , together they define the secret code C.

The public key is given by the public n×k generator matrix Gp = TG over F2,
where G is a generator matrix of the secret code C and T is a non-singular k×k
matrix over F2, the purpose of which is to bring Gp into reduced row echelon
form, i.e. Gp = [I|G2], which results in a more compact public key [7]. The
encryption operation (Algorithm 1) allows messages v ∈ Fk2 . A random vector
e ∈ Fn2 with hamming weight wt (e) = t has to be created. Then the ciphertext
is computed as z = vGp + e. Note that due to the reduced row echelon form
of Gp the first k bits of v are reproduced in vGp. However, since the McEliece
PKC, as well as the Niederreiter PKC, which is introduced shortly, needs to be
wrapped in a so-called CCA2 conversion [26], this is not a problem [7].

McEliece decryption is performed by applying error correction to the cipher-
text z, which can only be done with the knowledge of the secret key, i.e. the
code C. With the exception of the first step, which is the computation of the
syndrome polynomial S(Y ), which will be the topic of Section 4 and will be
explained there, the further details of the decryption procedure are irrelevant
for the understanding of the topics of this work.

The McEliece parameters are given by the code parameters n, k and t. An
example parameter set giving about 100 bits of security with respect to the
attacks given in [27] would be be n = 2048, k = 1498 and t = 50, yielding a
public key size of about 100 KB.

The other encryption scheme is the Niederreiter [2] scheme. Here, the public
key consists of the public parity check matrix Hp = THs, where Hs is the

parity check matrix of the private code and Hp ∈ F(n−k)×n
2 , and T is chosen

equivalently to its counterpart in the McEliece scheme. Furthermore, as in the
McEliece scheme, Hp can be put in systematic form. Then the public key will be
of the same size as for the McEliece cryptosystem. The Niederreiter encryption



is depicted in Algorithm 2. The message is encoded into an error vector of weight
t and the ciphertext is the corresponding syndrome, which can only be decoded
by the holder of the private key.

Algorithm 2 The Niederreiter encryption Operation

Require: the Niederreiter public key H ∈ F(n−k)×n
2 and the message m

Ensure: the ciphertext z ∈ Fn−k
2

1: encode the message m into e ∈ Fn
2 , where wt (e) = t, using an appropriate algorithm

(“constant-weight-word encoding”)
2: z ← eH

3 Online Public Operation

In this section, we explain the main idea of the paper, namely how to implement
the public operations of code-based schemes without storing full public keys on
the device. In a naive approach, the public operation, which we here assume
to be an encryption operation, would be realized by first retrieving the public
key (embedded into a public key certificate containing also a signature) of the
communication partner, storing it on the device, computing the hash value of
the certificates to-be-signed (TBS) data (which includes the code-based public
key), verifying the signature, and finally encrypting the designated message using
the certificate’s public key. With the proposed approach however, no storage of
the whole public key is required. Instead, only a comparatively small amount
of RAM memory will be used. The basic idea is to use the computation time
that is available to the devices CPU in the time interval between the receival
of two bytes via the serial interface. During this interval both the encryption
algorithm and the hash algorithm are advanced by one small step. Hence we call
this approach “on-line public operation”.

This approach works because both the computation of the hash value of
the public key and the matrix-vector product only depend on a small part of
the whole public key at any given point in time: while the hash function acts
on blocks of multiple bytes (for instance 64 bytes for SHA-256), the matrix
multiplication could in principle be carried out bit-wise.

3.1 Description of the Online Public Operation

In Figure 1, the complete process of the on-line public operation approach is
depicted. On the left hand side, the processing of the certificate containing the
code-based public key to be used in the public operation is shown. Here, we
assume that the public key is contained in an X.509 public key certificate [28].
Such a certificate is constituted by the sequence of the TBS data, followed by
a field containing information about the signature algorithm (not shown in the



figure) and finally the signature. The signature ensures the authenticity of the
TBS data, and is calculated based on their hash value, using a hash algorithm
as specified in the preceding information field. Please note that the signature
algorithm used to sign the user certificate needs not to be code-based (in which
case the trust anchor certificate would contain a large code-based key itself).
Instead, a hash based signature scheme [29] could be used. These schemes are
also quantum computer resistant and feature extremely small public keys.

In Step 1a the part of the TBS data that precedes the public key is received by
the device and processed in the normal manner, which includes the computation
of the hash value of the received data. Once the transmission of the public key,
i.e. the public matrix M , begins (Step 2a), the computation of the product vM
begins, where v is a binary vector whose meaning depends on the type of the
code-based scheme. In an encryption scheme like McEliece or Niederreiter, v
represents a message. The hash computation is also continued. After the whole
public matrix has been received, the remaining TBS data is again processed in
the normal manner (Step 3a). Finally, when the TBS data have been completely
received the hash value of the TBS data is ready. It is then used to verify the
certificate’s signature with the help of the certificate of the issuer I which is
stored on the device as the trust anchor (Step 4).

The public operation of the code-based scheme is potentially composed of
computations before the matrix-vector product is needed (Step 1b). These com-
putations can be done before the public matrix transmission begins, e.g. they
could be carried out before and/or during the receival of the TBS data preceding
the public key. Once the public key matrix has been fully received and processed
(i.e. after Step 2a), the remaining computations of the public operation are car-
ried out (Step 3b), e.g. the addition of the error vector e in the McEliece scheme.
The result is either a ciphertext (in case of an encryption scheme) or a Boolean
value (in case of a signature verification). But whether this result is output re-
spectively further processed by the device (Step 5a) depends on the result of the
signature verification (Step 4). If the verification fails, the device will output an
error answer (Step 5b).

3.2 Transmission Rates

In this section, we give an overview of transmission rates available for embedded
systems, especially smart card microcontrollers.

For instance a SLE66CLX360PE [17] smart card platform from Infineon
Technologies AG features an ISO/IEC 14443 compliant contactless interface
which can transmit up to 106 KB/s. This allows the transmission of a McEliece
public key of size 100 KB for the parameters given in Section 2.2 in about 1s,
which can be considered at least acceptable for certain applications.

In the future, contactless transmission rates may be about 837,500 bytes/s
[30], i.e. about 8 times higher than the rate considered above3. In the following

3 In the referenced work, this transmission rate is actually only achieved in the direc-
tion from the card to the reader. However, we want to use it merely as an orientation
for the transmission rates achievable in the near future.



Fig. 1. Overview of the complete process of the on-line public operation.

section, we will show that it is still feasible to sustain such a high transmission
rate at typical smart card CPU speeds of about 30 MHz if adequate hardware
support is available on the device. Note that in this case there are still about 35
CPU cycles available between the receival of two bytes.

3.3 Example Implementation

We implemented the proposed approach in the C programming language on
an ATUC3A1512 32-bit microcontroller from Atmel’s AVR32 family. We chose
an embedded 32-bit platform basically because SHA-256 is designed for 32-bit
platforms. There also exist 32-bit smart card controllers [31], thus our evaluations
are significant for this type of platform.

The personal computer (PC) communicates with the AVR32 over a serial
line. For the implementation of the serial communication, on the AVR32, we used
the API for the device’s Universal Asynchronous Receiver Transmitter (UART)
provided by Atmel. On the side of the personal computer, we used the API to
the serial port of the Linux operating system. The PC can send commands to
the AVR32, which are formed by a six byte header and optional payload data,



the length of which is encoded the last four header bytes. The first header byte
is zero for all commands, and the second byte determines one of the following
commands:

– set the vector to multiply
– carry out the on-line multiplication (starts an interactive protocol for the

matrix transmission described below)
– get the multiplication result from the AVR32
– get the hash result from the AVR32

The AVR32 responds to these commands by sending a two byte status code and
optional data payload preceding the status code, or in the case of the on-line
multiplication command, by starting an interactive protocol.

This protocol is depicted in Figure 2. As a precondition, the vector to mul-
tiply has to be set in the device through the corresponding command. After the
receival of the on-line multiplication command (which does not carry payload
data), the AVR32 sets up two buffers B1 and B2 which are of an equal prede-
fined size. It sends a two byte acknowledgement (ACK) code to the PC as the
answer to the command. Then the PC sends the first matrix part which is of
equal size as the buffers B1 and B2. The receival of a single byte over the UART
interface of the AVR32 triggers an interrupt which is serviced by an Interrupt
Service Routine (ISR) which writes the byte to the next free position in B1. Af-
ter the first block has been received completely, the AVR32 sends another ACK
code to the PC, who in turn reacts by sending the next part. At this point the
AVR32 exchanges the role of the buffers B1 and B2: the data is now received to
B2 (which did not play any role while receiving the first part), and B1, contain-
ing the first matrix part, is fed into the SHA-256 computation and the matrix
multiplication. Both, the hashing and matrix multiplication are implemented as
objects which can be updated by calling routines that take arbitrary amounts
of data as an argument.

For hash functions, this is the standard implementation technique. Because
demanded by our approach, we adopted this technique for the matrix multipli-
cation. In our implementation, the matrix-vector multiplication is carried out
column-wise. The advantages and disadvantages of this approach in contrast to
row-wise multiplication is discussed in Section 3.4. The multiplication object
knows the number of rows and columns of the matrix and has the source vector
set. As the matrix data is fed column-wise it keeps track of the current row
and column position. It processes the current column by carrying out the logical
AND (multiplication in F2) between the matrix column and the vector 32-bit
word-wise, and computes the XOR (addition in F2) with a 32-bit accumulator.
When a column is finished, the parity (i.e. sum of all the word’s bits in F2) of
the accumulator is written to the corresponding result bit.

Non-interactive Version of the Protocol It turned out that the interac-
tive protocol incurs significant delay in the communication which most probably
results from the fact that our PC program is running in user space and thus



sending and receiving data via the serial interface is delayed. If the protocol
were implemented in a card terminal, which could be the case in a real world
implementation of the on-line multiplication such issues would not arise. To show
the efficiency of the approach, we modified the protocol depicted in Figure 2:
the AVR32 does not send any ACK answers beyond the very first one. Conse-
quently, the matrix data is sent as a continuous stream after the AVR32 has
sent the initial ACK. In this way, the protocol looses the feature that it works
independently of the ratio of transmission speed and computation speed: in this
non-interactive setting, it must be guaranteed that the hash and multiplication
computation of the processed buffer has finished before the receive buffer has
been completely filled. With this approach the performance could be improved
by a factor of roughly 1.3 compared to the interactive variant of the protocol.
The concrete results are discussed shortly.

Simulation of higher Transmission Rates On the chosen AVR32 platform,
the maximal transmission speed is given by a baud rate of 460,800. In the RS232
transmission format each data byte is encoded in 10 bits, yielding a net trans-
mission rate of 46,080 byte/s. In order to demonstrate the computation speed
that would be possible beyond this limitation, we implemented a means of sim-
ulating higher transmission speeds. This is achieved by creating a matrix whose
rows have repetitive entries, i.e. the values of 8-bit chunks repeats r times. An
example of the beginning of a row for r = 4 would be

0x1D, 0x1D, 0x1D, 0x1D, 0xA3, 0xA3, 0xA3, 0xA3, 0x22, ...

In this setting, on the PC side such a repetitive matrix is generated. When the
matrix is transmitted, however, each repeated element is sent only once. On the
receiving side, the repetition value r is also known and each received byte is
appended to the buffer r times. In this way, we simulate a transmission rate
Bsim = rBreal, where Breal is the actual UART transmission rate.

Table 1 shows the measurement results for the non-interactive version de-
scribed in the previous paragraph. Here, we used a matrix with 1000 rows and
800 columns, i.e. yielding a size of 100,000 bytes. This is approximately the
size of McEliece public keys with 100 bit security [19]. In all our measurements
the CPU speed of the AVR32 was set to 33 MHz, since also todays contactless
smart card platforms run at approximately this speed, for instance the Infineon
Technologies SLE76 [16] smart card controller. The SLE76 CPU only runs at
30MHz, using this in our implementation showed that at this CPU speed the
(simulated) transmission rate given in the rightmost column of Table 1 could
not be supported in the experiment.

Furthermore, we measured the random error vector creation as the second
part of the encryption operation for parameters n = 2048 and t = 50 to be less
than 4 ms at a CPU speed of 33MHz, the addition (XOR) of the error vector to
the intermediate vector is certainly even much less complex and thus completely
negligible for the timings considered here.

The transmission speed of 386,640 bytes/s, that can be sustained in our test
setup, is approximately half of that of the research implementation presented in



[30] already mentioned in Section 3.2. Thus our results show that even without
dedicated hardware, todays embedded platforms already enable computation
speeds for the hash computation and matrix multiplication not too far from
the associated transmission rates that can be expected to be supported by con-
tactless devices in the near future. This makes it feasible that with adequate
hardware support the full 837,500 Byte/s rate given in [30] can be supported by
the throughput of the computational operations.

Fig. 2. Schematic overview of the interrupt based implementation of the on-line
multiplication.

The hash implementation is based on the open source implementation [32].
The C source code allows for complete unrolling of the SHA-256 compression
function through a macro definition. Activating loop unrolling resulted in a per-
formance gain of 1.6 for the hash function computation. All further performance
data is based on this implementation choice.

3.4 Column-wise vs. Row-wise Matrix-Vector Multiplication

The row-wise computation of the matrix-vector multiplication is an alternative to
the column-wise approach. In this case the computation of the result is according
to b =

∑
iMiai, where Mi is the vector represented by the i-th row of M and

ai it the i-th entry of the vector a. This means that a row Mi is added to the
result if the corresponding bit ai is one, otherwise nothing has to be done. In
the normal case, where the whole matrix is available instantly, this approach has
a significant advantage over the column-wise approach since on average half of



based on computation
throughput

experimental
result - w/o ACK

cycles/byte measured: 55.6 for SHA-256,
4.2 for mult. yields: 59.8

92

time at 33MHz CPU for
100,000 Bytes

181ms 279ms

transmission rate in bytes/s 551,839 Bsim = 368, 640 (r =
8)

Table 1. Performance of the SHA-256 and binary matrix multiplication on the
AT32UC3A1 platform. The results in the first column are based on the through-
put benchmarking results for the two computational tasks. The following two
entries in this column, that give the resulting time for the on-line multiplication
and the transmission rate necessary to support the throughput of both compu-
tational tasks, are theoretically derived from the former. In the second column,
the time of the whole on-line matrix multiplication with the given transmission
rate Bsim = 8 · 46, 080 byte/s was measured on the ATUC3A1512 platform and
the computational throughput given in the first row is the effective throughput
corresponding to the measured running time. Here a receive buffer size of 1536
bytes was used.

vector a’s bits have value zero. But in the case of the on-line public operation,
this advantage disappears since the matrix-vector multiplication’s running time
is determined by the transmission time alone (under the assumption of sufficient
computational power of the device as analyzed in Section 3.2). The row-wise
approach would only have an advantage if the saved computational effort could
be used to perform other tasks, which can be assumed to be rather unlikely or
at least of minor relevance in the context of embedded devices such as smart
cards.

On the other hand, the disadvantage of the row-wise multiplication lies in
its potential side-channel vulnerability. Specifically, if an attacker is able to find
out whether the currently transmitted row is added or ignored, for instance by
analyzing the power trace [33], he can deduce the value of the secret bit ai.
Of course, countermeasures can be implemented. A certain randomization could
for instance be introduced by keeping a number of received rows in a buffer
and processing them in a randomized order. However, whether the questionable
computational advantage of this method is worth such efforts must be decided
in a concrete implementation scenario.

In any case, once the X.509 key format for a code-based scheme is defined,
the choice for one of the two methods is taken. While it then would still be
possible to transmit the matrix in the other orientation in order to carry out the
multiplication, the on-line hash computation only works if the correct orientation
is used.



3.5 Code-based Signature Schemes

A number of code-based signature schemes have been proposed. In the following,
we will address two of these schemes very briefly with the goal of showing that
the proposed approach for the on-line public operation is applicable to both of
them.

In [3], the McEliece scheme is inverted in the sense that the signer proves his
ability to decode a binary vector related to the message using a certain code.
Thus, the signature verification basically consists of a matrix-vector multiplica-
tion just like for the encryption schemes described in Section 2.2. For security
considerations concerning this scheme please refer to [34,35].

A signature scheme involving two binary matrices as the public key is pre-
sented in [4]. In the verification operation, both matrices have to be multiplied
by a vector. Thus the on-line public operation can be carried out by transmitting
them one after another. Note, however, that the originally proposed parameters
for this scheme are insecure [36].

4 McEliece Decryption without the Parity Check Matrix

In the McEliece scheme, the first step of the decryption operation, which for
the sake of brevity we will not not fully explain here, is, as already men-
tioned in Section 2.2, the computation of the syndrome polynomial S(Y ) as
S(Y ) ≡

∑n
i=1

ci
Y⊕αi

mod g(Y ), where g(Y ) is the Goppa Polynomial, ci is the
i-th ciphertext bit and the αi is the i-th support element.

In the implementations [21,18,19,22], the syndrome computation is done with
the help of the parity check matrix H of the code. This matrix is in fact nothing
else than a list of all the n different polynomials 1

Y⊕αi
mod g(Y ) which yields

the syndrome vector when multiplied with the ciphertext as a bit vector.

code parameters n = 2048, t = 50 n = 2960, t = 56

security level 100 bit > 122 bit

cycles t @ 33 MHz cycles t @ 33 MHz

with par. ch. mat.
cyc. whole decr. 2.00 · 106 61 ms 3.12 · 106 95 ms

cyc. only syndr. comp. 0.26 · 106 8 ms 0.39 · 106 12 ms
private key bytes 158,140 277,328

w/o par. ch. mat.
cyc. whole decr. 4.42 · 106 134 ms 7.39 · 106 224 ms

cyc. only synd. comp. 2.65 · 106 80 ms 4, 71 · 106 143 ms
private key bytes 17,340 28,688

Table 2. Private key sizes, cycle counts and corresponding timings taken for the
McEliece decryption operation and its suboperation, the syndrome computation,
on an Atmel AT32 AP7000 CPU. Each cycle count was obtained by carrying
out the operation ten times and taking the mean of the results.



The syndrome computation without the parity check matrix is in princi-
ple achieved by invoking an Extended Euclidean Algorithm (EEA) with g(Y )
and Y ⊕ αi as the initial remainders. This EEA executes in a single iteration.
Accordingly, in an implementation of the syndrome computation a number of
optimizations are possible. The resulting Algorithm is given in Algorithm 3.
There, z[i] denotes the i-th ciphertext bit and Bj the coefficient to Y j of B(Y ),
etc. Its average complexity (i.e. for a ciphertext with Hamming weight n/2),
expressed in the terms of additions, multiplication and inversions in F2m , is
Csyndr = nt(Cmult + Cadd) + n

2Cinv.
We implemented this algorithm in a McEliece PKC implementation based

on the open source implementation [21] presented in [7]. Table 2 shows the tim-
ing results measured on an Atmel AT32 AP7000 CPU, a CPU similar to the
AT32UC3A1. The CPU runs at 150 MHz, however, we give the according run-
ning time for the typical smart card CPU speed of 33 MHz, which was already
employed in Section 3.3. The smaller parameter set has already been introduced
in Section 2.2, the larger one is is proposed in [27] for 128-bit security though
there the authors assume addition of t+ 1 errors, which is possible through the
employment of list-decoding [37], which is not supported by our implementation.
Accordingly the security level here is only approximate, but the reduction of se-
curity of our implementation only using t errors, however, can easily be bounded
by understanding that an attacker can get from a ciphertext with t+ 1 errors to
t errors by guessing one error position correctly, the success probability of which
is (t+ 1)/n = 0.02. Accordingly, the security of the scheme with t errors cannot
be smaller than 128− log2(1/0.02) > 122 bits.

The respective private key sizes without the parity check matrix given in
Table 2 are formed by the Goppa Polynomial g(Y ), the support Γ , a matrix
for computing the square root modulo g(Y ), which is needed to speed up the
decryption, and the logarithm and anti-logarithm tables for F2m , each of size
dlog2ne elements, i.e. a total of 8192 resp. 16384 bytes for either parameter set
(each element occupies 2 bytes). These tables need not necessarily be stored in
the key, instead they can be created in RAM before the decryption operation, if
allowed by the memory constraints of the given platform.

From this example implementation, that does not use any hardware support
for the F2m operations or DSP instructions, we see that the decryption time
approximately doubles when the parity check matrix is not stored as part of the
key, but due to the general speed advantage of the McEliece scheme over RSA
or Elliptic curve based schemes [7,18] these timings are still highly competitive.

5 Conclusion

In this work, on the one hand, we have shown an approach for implementing
the operations involving code-based public keys on memory-constrained devices
like smart cards, that covers the matrix-vector multiplication as well as the
hash computation for the verification of the user certificate. The solution is
applicable to basically all code-based encryption and signature schemes that



Algorithm 3 The Syndrome computation without parity check matrix

Require: the ciphertext z ∈ Fn
2 , and the Goppa Polynomial g(Y ) ∈ F2m [Y ] of degree

t
Ensure: the syndrome polynomial S(Y ) ∈ F2m [Y ] of degree 6 t− 1
S(Y )← 0
for i← 0 up to n− 1 do

if z[i] = 1 then
B(Y )← 0
b← gt
for j ← t− 1 down to 0 do
Bj ← b
b← b · αi ⊕ gj

end for
f ← b−1

for j ← 0 up to deg (B(Y )) do
Sj ← Sj ⊕ f ·Bj

end for
end if

end for

have been proposed so far. Thus we are confident that this work improves on
the applicability of this class of cryptographic schemes by reducing the impact
of the large public key sizes for memory-constrained devices.

Furthermore, we also showed that the McEliece private key size can be dra-
matically reduced by excluding the parity check matrix while still allowing for
practical decryption timings on memory constrained devices. As a result, the
McEliece scheme in our opinion gains superiority over the Niederreiter scheme:
while the situation for the public key as discussed in this work is equal for both
schemes, only the McEliece scheme allows for the reduction of the private key size
as proposed in this work. The reason is simply that the Niederreiter private key
size is mainly determined by the size of the scrambler matrix T , which cannot be
excluded in this scheme. In [20], the matrix T is implemented as a pseudorandom
sequence of bits, which effectively reduces the Niederreiter private size, but this
comes at the expense of public key size: because of the pseudorandom nature of
T , the public key matrix cannot be in reduced row echelon form, resulting in an
otherwise unnecessary increase of the public key size. In view of the results of
the first part of this work, this directly affects the time taken by the encryption
operation on an embedded device (at least in a PKI context).
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