
Applying Symmetric Encryption
Technical Report

Version 1.2

Falko Strenzke
cryptosource GmbH, Darmstadt
fstrenzke@cryptosource.de

www.cryptosource.de

October 28, 2016

This work, which is intended to close a gap left by basically all text books on cryptogra-
phy, shall serve as guidance for the design and implementation of basic symmetric encryption
schemes, the challenges of which are often underestimated as recurring reports of failures in
this field show. It points out the main pitfalls of such an undertaking, specifically it explains
the importance Authenticated Encryption and presents recently published attacks against long
known vulnerabilities in symmetric encryption schemes. Attacks and countermeasures are ex-
plained with the aim of giving application and protocol designers the knowledge of identifying
and preventing such fundamental vulnerabilities in their constructions and implementations.

1

fstrenzke@cryptosource.de
www.cryptosource.de

Technical Report: Applying Symmetric Encryption
Version 1.2

Contents

1. Introduction 4

2. The most important Issues with the Application of Symmetric Encrytion 5
2.1. Limitations of Cryptography . 5
2.2. Encryption is (almost) never enough . 6
2.3. Use a secure Standard Mode of Operation . 6
2.4. Use the chosen Mode of Operation correctly . 7

3. A Note on Storage Encryption 7

4. Properties of Symmetric Encryption Schemes 7
4.1. On-line Operations . 7
4.2. Random Access . 8
4.3. Initialization Vectors and Nonces . 8
4.4. Parallelization . 8
4.5. Precomputation . 8
4.6. Malleability . 8
4.7. Overview of the Standard Modes of Operation . 9

5. Message Authentication Codes 9

6. Chosen Plaintext Attacks 10
6.1. CBC’s Vulnerability against Blockwise Adaptive Adversaries 10
6.2. Dangers of Encrypting Compressed Data . 10

7. Known Plaintext Attacks 12

8. (Adaptive) Chosen Ciphertext Attacks 12
8.1. Avoiding Padding Oracles . 12
8.2. The Order of Decryption and MAC Verification . 15
8.3. Decryption in Authenticated Encryption is not on-Line 15

9. Hybrid Encryption 16

10.Conclusion 16

A. Problematic Implementations of Authenticated Encryption in open Source cryptographic
Libraries 20

2

Technical Report: Applying Symmetric Encryption
Version 1.2

“Expect poison from the standing water”
– William Blake, The Marriage
of Heaven and Hell

3

Technical Report: Applying Symmetric Encryption
Version 1.2

Availability

This document is available at www.cryptosource.de/applying_symmetric_encryption.pdf.

Disclaimer

The information, explanations and advices given in this document were verified and are correct to the best
of the author’s knowledge. However, the author takes no responsibility for the correctness of the contents
of this document. All warranties, expressed or implied, are disclaimed, including without limitation, any
and all warranties concerning the accuracy of the contents including its fitness or appropriateness for a
particular use. Furthermore, the author shall not be liable for any and all damage, direct or indirect, arising
from or relating to any use of the contents contained in this document.

1. Introduction

Today, information processing systems are employed in a vast and growing range of applications. Besides
the internet, they have reached systems such as cars and critical infrastructures controlling the essential
supply of the technologically high developed civilizations. For the protection of the data that is inevitably
stored or exchanged in the context of these applications, cryptography is essential. The main goals of its
employment are achieving confidentiality and authenticity of data. To this end, symmetric cryptography
still plays the major role compared to public key cryptography. The reason for this is that even where public
key cryptography is used, it is usually accompanied by symmetric cryptography, which in these cases forms
the lower layers for encryption and authentication. Examples are hybrid encryption schemes, i.e. the public
key encryption of a symmetric key which, in turn encrypts the payload data, and symmetric session keys
agreed upon through a public key scheme. Errors in the specification or implementation of the symmetric
layer threaten the security of the combined scheme.

However, the story of the application of symmetric cryptography is not only a story of great successes,
but also of great failures. Besides the failures in primitives, e.g. ciphers and hash functions, that turned
out to be too weak and were and are kept in use far beyond the point where replacement was indicated as
mandatory by scientific progress, there is a great source of security problems stemming from the incorrect
use of the symmetric primitives, leading to information leakage vulnerabilities. But there are, in our point
of view, fundamental differences with respect to the reasons for the occurrence of either type of failures in
the application of symmetric cryptography: the use of weak and outdated primitives is mainly due to cost
considerations. Any company or institution will have to make a cost and risk analysis whenever scientific
progress suggests dangers in the application the currently implemented technical solutions and replacement
of these solutions is considered. Often, as it seems, the result of these analyses in the field of cryptographic
schemes is that it is cheaper to keep the endangered techniques; indeed, often there must occur a concrete
malicious attack in the field before the outdated schemes are put out of use. Unsatisfying as this situation
may be, especially with the often unclear impact on risks and costs resulting for end consumers – contrary
to those of the responsible companies these are not averaged for the single end user – the reasons for these
problems and the necessary countermeasures, i.e. the enactment of laws and regulations that enforce the
use of secure algorithms, are clear. For the second type of failures however, the picture is very different: In
the design of new devices, frameworks and applications, the employment of advanced primitives like AES
is often not a problem. Yet still, in the design of protocols and application of cryptographic primitives
the same mistakes are made over and over again. Sometimes, even a large audience of potential security
reviewers does not prevent fundamental errors from infiltrating the field for considerable amount of time.
A good example for this is the error with unauthenticated or improperly authenticated encryption (this is
one of the topics that will occupy a large part of this work) in the XML encryption standard [1]. To a much
larger fraction, this type of failures does not result from consciously holding on to a legacy solution for the

4

www.cryptosource.de/applying_symmetric_encryption.pdf

Technical Report: Applying Symmetric Encryption
Version 1.2

reasons discussed above, but from plain lack of knowledge. In our opinion, one of the main reasons for this
is the text book situation on application of cryptography. While basically any text book on cryptography
generously explains the inner workings of ciphers, security of RSA, and many other basic elements of
cryptographic theory, they generally do not mention important risks in the application of cryptographic
schemes such as those arising from missing or incorrectly implemented Authenticated Encryption. Our
critique is not that these text books are faulty. The main point that we criticise is the missing distinction
between the theory of cryptographic primitives on the one side and their correct application on the other
side. As a matter of fact, only very few people need to understand the inner workings of the ciphers or
public key schemes that they are using, because fortunately a large number of software implementations for
basically any conceivable hardware platform is freely available on the internet. What they need to know, is
how to build a secure encryption scheme from primitives. Concerning public key cryptography, the same
class of people needs to know what CCA2 conversion to employ and what key parameters to use with RSA,
but they need not have to know much about the underlying reasons. This calls for a text book on best
practices in cryptography, where the term “best practices” has to be used with care: for the cases we have
in mind, disregarding these practices often results drastic security problems. But unfortunately, to the best
of our knowledge, such a book does not yet exist.

The following text is not the book the lack of which we claim above. However, it addresses the main
points in this context for the case of symmetric cryptography, and only for achieving confidentiality and
authenticity of messages, which is the most fundamental task of cryptography that suffices for a large
number of applications. It is not very convenient in the sense that it presumes some basic knowledge
in basics of cryptography and its terminology, for the concrete specifications of the schemes it refers the
reader to the respective standards, and also does not cover them in full breadth. However, it addresses the
most prevalent sources of errors in protocols using symmetric encryption. As it clearly aims to give the
reader the understanding of how to achieve secure cryptographic protocols and implementations, it does
not care for the concrete exploitability of the respective failures it mentions in specific application contexts,
though these might be very limited in the works which devised them. It would be a false understanding
of IT security to think that this latter circumstance means any kind of relaxation for the design of new
protocols. If a cryptographic scheme is specified incorrectly, and the security impact of this failure are not
thoroughly analysed, then no statement can be made about the security of the system. Designing correct
schemes and protocols is in general much more cost effective than a security analysis of the impact of their
faults in a concrete application, which, furthermore, would have to be repeated upon any change in that
application.

The main focus of the document clearly lays on need of correctly implemented authenticated encryption
for purposes of confidentiality. Simple as this topic may seem, its omission from basically all text books
and its continuing appearance as a source of dramatic security failures make it outstanding from the other
failures this work intends to help to prevent.

2. The most important Issues with the Application of Symmetric
Encrytion

This section summarizes the most important security aspects of symmetric encryption schemes, that when
ignored in many cases will introduce severe security flaws into a system.

2.1. Limitations of Cryptography

The first thing one has to consider is that encryption of messages conceals the actual content, but not
that a message is sent and not the length of that message. While the former aspect is trivial and plays
a role basically only for privacy issues, e.g. anonymous surfing on the internet, the problems that might

5

Technical Report: Applying Symmetric Encryption
Version 1.2

result from the latter might be overlooked in some cases, especially when transformations like compression
precede the encryption, this is addressed in Section 6.2.

A simple example can corroborate how the message length can give valid information to an adversary:
assume that a central server sends messages encrypted with a symmetric encryption scheme that preserves
the byte length of the message (a realistic assumption) to a large number of recipients. Assume that a six
digit secret is encoded as a number with a leading length byte followed by the numeric value without leading
zeros. This would, especially if the other message parts are constant in length, reveal to the adversary the
number of leading zeros in the secret just from observing the lengths of the ciphertexts. Given hat these
secrets are chosen randomly, he might identify those users with secrets of the form 0000XY, 00000Y, or
000000, clearly giving him a great advantage when performing on-line attacks which incur the guessing of
these secrets as authentication tokens.

This example seems contrived and this type of vulnerability trivial to avoid. Note, however, that often
in complex software systems different layers of information processing work together, and that without a
thorough security review no single person might have an overview of their synergetic effects.

Thus in frameworks where for the designer of the cryptographic protocol it is not clear what kind of
data in what format will be send over the encrypted channel, as a general countermeasure, it could be
considered to add a string of few bytes of random length to each message.

2.2. Encryption is (almost) never enough

Merely symmetrically encrypting a message is not sufficient for two reasons. The first one is that using
a block cipher in any mode like CBC, ECB, CTR, CFB, OFB (Block Cipher Modes of Operation, which
we abbreviate as BCM, are explained shortly) or any Stream Cipher does not provide any kind of integrity
protection. This means that an attacker is able to perform manipulations on the ciphertext which lead
to modified plaintext. With most modes, specifically whith all of the above mentioned except for ECB,
it is even possible to provoke the flipping of plaintext bits in chosen positions. Allowing an attacker to
alter plaintexts is in general an undesirable feature, so it is obvious that some sort of integrity protection
is needed as well.

But there is a second reason for the need for integrity protection in symmetric encryption schemes: The
ability of the attacker to introduce modifications in the plaintext can also be used for attacks in which
information about the plaintext is obtained. This is a threat when the attacker can feed manipulated
ciphertexts into the decryption device and get some kind of information, for instance error messages, about
the decryption process. Then he can potentially gain information about the plaintext. This type of attack
is usually referred to as decryption oracle attack, i.e. the decryption device acts as an oracle. It is also
important to know that it is possible to implement a means of authentication or integrity protection that
suffices for the first reason, but not for the second.

A generic solution which removes these problems is given through the so called authenticated modes
or a generic composition of an Encryption Scheme (block cipher in a specific mode of operation or a
stream cipher) with a so called message authentication code (explained in Section 5). They provide what
is labeled “Authenticated Encryption”. But there are still some possible caveats here, so even if one uses
Authenticated Encryption, for instance by using the respective functions of a cryptographic libraries, this
can still result in severe vulnerabilities in the application. Specifically, this is highly probable when parts of
the plaintext are processed prior to the complete receival of the ciphertext and the integrity verification.
The famous padding oracles are one such type of vulnerability, but the are more. This is problem domain
is explained in Section 8.

2.3. Use a secure Standard Mode of Operation

The modes of Operation ECB, CBC, CFB, OFB and CTR are defined in [3] and are still considered the
standard Block Cipher Modes of Operation. However, there is clear flaw in the ECB mode as pertaining

6

Technical Report: Applying Symmetric Encryption
Version 1.2

to the leakage of repetitive plaintext patterns through the ciphertext. Thus ECB should not be used. The
other modes, except for a subtle problem in CBC, meet all security requirements except that they lack any
means of providing integrity protection as addressed in Section 2.2, making it necessary to combine them
with a Message Authentication Code, the concept of which will be introduced later in Section 5. Otherwise
it is possible to choose an Authenticated Mode like EAX[4], CCM[5] or GCM [6].

2.4. Use the chosen Mode of Operation correctly

Once a mode of operation is chosen, it is important to fully adhere to the requirements are there pertaining
to the creation of the initialization vectors and nonces. For instance, be aware that there is a difference in
the requirements between a Nonce for CTR and the Initialization Vector for CBC [3]. These are explained
in Section 4.3. Do not stray from any of the recommendations given in the respective standard without
having fully understood the implications.

3. A Note on Storage Encryption

It is important to understand that storage encryption, e.g. hard disk encryption, is a very different setting
than message encryption, the same certainly applies to the aspect of integrity or authenticity. This results
in different efficiency and security constraints. For example, in disk encryption the use of Authenticated
Encryption is often avoided because the creation of the MAC over a single sector after write access to a
single byte incurs a large computational cost. Furthermore, the space occupied by the MAC tags saved
on the disk would not be available for data storage. Also, the attack scenarios are different. In the
setting of message encryption one generally has to assume that an adversary can intercept and manipulate
ciphertexts. Applied to the case of disk encryption, this would mean repeated access to the encrypted
storage volume with legitimate use in between. Since there are also attacks where an attacker succeeds by
installing malware in the boot sector, which only need a single access to the device, it is justified to leave
the more complex attacks uncovered.

For these reasons this document ignores the specifics of storage encryption, it only addresses issues
arising in the scenario where messages are exchanged.

4. Properties of Symmetric Encryption Schemes

In this section, the important security and efficiency properties of the standard BCMs are presented. An
overview of the standard BCMs with respect to these features in the form of a table is given in Section 4.7.

4.1. On-line Operations

The on-line property of a data processing algorithm means that the algorithm can produce output while
the input data is being fed into it part by part. The counterexample is an algorithm that needs the whole
input data before it outputs anything. The on-line property is regarded an important efficiency feature
not only in symmetric encryption, but in many fields of data processing, for instance in data compression.
In symmetric encryption, the on-line property is usually also understood to include the demand that the
ciphertext is only larger than the plaintext by a constant (usually a header and/or the MAC).

From a technical point of view, all standard cryptographic modes posses the on-line property for both
encryption and decryption. However, from a security perspective, there are important restrictions: Con-
cerning encryption, there is a subtle problem when using CBC encryption in an on-line manner. Details are
given in Section 6. The problem with on-line decryption for any standard mode becomes apparent when
employing Authenticated Encryption, this will be explained in Section 8.3.

7

Technical Report: Applying Symmetric Encryption
Version 1.2

4.2. Random Access

Random read access into the ciphertext is understood as the possibility to decrypt an arbitrary part (for
instance a block of the underlying cipher) in the ciphertext without having to decrypt all preceding blocks.
In the setting, where messages are exchanged between sender and receiver, this property usually is of no
importance. But in some settings it might be relevant.

Random write access, i.e. the selective modification of parts of a ciphertext as parts of the message are
changed, plays a role mainly only in storage encryption and will be ignored in this work.

4.3. Initialization Vectors and Nonces

Some BCMs demand an initialization vector (IV), some demand a nonce. Either is needed to randomize
the initial state of the encryption scheme, which is necessary to prevent certain attacks. An IV must
be unpredictable to any third party which may influence the contents of the plaintext. Specifically, this
implies that IVs are not reused, i.e., for any new encryption under the same key, a new IV must be used.
Furthermore, an IV must be pseudorandom, i.e. chosen at random and equally distributed from the space
of all possible blocks.

The word “nonce” is constructed from the words “number” and “once”. It has much weaker require-
ments: It just has to be ensured that each nonce is used only once for encryptions under the same key,
just as the construction of the word “nonce” suggests. A nonce can be implemented by a counter.

Both IV and nonce creation are addressed in [3]. Note that IV and nonce reusage have different security
impacts for the different BCMs.

4.4. Parallelization

For certain applications, it might be relevant whether it is possible to perform encryption or decryption
of the individual data blocks in parallel in a BCM. The precondition for this clearly is that the encryption
or decryption of any block must be independent of the encryption or decryption results of all the other
blocks. Parallelization of block operations allows lower latencies if the respective hardware platform supports
some type of parallel computation or the algorithm is implemented in a manner inherently supporting, or
demanding, parallel processing of blocks. One technique with this property is referred to as bit slicing [7].

4.5. Precomputation

There are applications, where it can be desirable to have the ability to precompute, before the plaintext or
ciphertext is available, intermediate values that allow for faster encryption or decryption after that data is
available.

4.6. Malleability

All BCMs exhibit so called malleability properties [8]. This means, that an adversary is able to perform
modifications on ciphertexts that, when decrypted, produce plaintexts that are related to the original
message. For the different standard BCMs, the malleability properties are different combinations of

• block reordering: the adversary can change the order of blocks in the ciphertext, resulting in a
corresponding change of plaintext blocks,

• bit flips: the adversary can introduce bit flips into the ciphertext, which result in predictable bit flips
in the plaintext,

• corruption of blocks: as a by-product, the above manipulations can also result in certain plaintext
blocks becoming completely pseudorandom and unpredictable.

8

Technical Report: Applying Symmetric Encryption
Version 1.2

CBC ECB CFB OFB CTR

encryption
on-line limited, see

text
yes yes yes yes

parall. no fully no only XOR fully
precomp. no no no yes, after

fixing IV
yes, af-
ter fixing
nonce

decryption

on-line limited
with AE

limited
with AE

limited
with AE

limited
with AE

limited
with AE

parall. fully fully fully only XOR fully
precomp. no no no yes, after

knowing IV
yes, after
knowing
nonce

random
read access

yes yes yes no yes

- IV require-
ment

pseudo-
random,
unpre-
dictable

N/A pseudo-
random,
unpre-
dictable

nonce nonce

- secure with
respect
to water-
marking
attack /
repeated
content
leakage

yes no yes yes yes

Table 1: Overview of the most important properties of the standard BCM. Orange cells indicate a security
threat in case the property is ignored.

4.7. Overview of the Standard Modes of Operation

Table 1 shows an overview of the security and efficiency issues of the BCMs discussed in the preceding
sections. The last row addressing the repeated content leakage resp. vulnerability against watermarking
attacks has not been discussed above. It only affects ECB and is the reason why ECB should not be used
– unlike the indicated security threats, this problem of ECB is not a result of erroneous use of the BCM,
but an inherent shortcoming of ECB.

Note that the modes CTR and OFB are actually stream ciphers build from a block cipher. The dis-
tinguishing feature of stream cipher is that it generates a pseudorandom key stream, which is XORed to
the message. CFB is basically also a stream cipher, but there the key stream depends on the previous
ciphertext, which is not the case for usual stream ciphers.

5. Message Authentication Codes

A Message Authentication Code (MAC) is an algorithm that produces a cryptographic checksum of a
message based on the knowledge of a secret key. Examples are CMAC [9] and HMAC [10, 11].

The usual procedure for combining a MAC with a symmetric encryption scheme, e.g. a block cipher in
certain mode of operation, is to append the tag generated by the MAC algorithm to the ciphertext. However

9

Technical Report: Applying Symmetric Encryption
Version 1.2

there remains the choice as to whether to apply the MAC algorithm to the plaintext or the ciphertext.
Considerations of involved security notions are given in [12]. From a formal point of view, the Encrypt-then-
MAC composition method is achieving maximal security, also from more practical consideration given in
Section 8.1, this method usually is the preferred one. But even with this method there remains a potential
pitfall, this is explained in Section 8.2.

6. Chosen Plaintext Attacks

In chosen plaintext attacks the adversary is able to control a part of the plaintext that is being encrypted.
All standard modes, except for ECB are secure against this type of attack, provided they are used correctly.
However, incorrect use of the CBC mode is even present in established protocols such as SSL as we will
see in the following subsection. The second subsection will deal with the general problem of encrypting
compressed data.

6.1. CBC’s Vulnerability against Blockwise Adaptive Adversaries

An example for incorrect use of a standard mode is the SSL protocol. In a single SSL-session, a single CBC
ciphertext is transmitted (which is also protected by a MAC, but this is irrelevant for the problem discussed
here). However, attackers that interact with the user or the SSL-client platform during this SSL session,
can, in certain scenarios, determine a low entropy string, i.e. a string for which only a small number of
values is possible (for instance a PIN number), if they can control the message contents of the first block
of the following messages within the same SSL session [13, 14, 15]. An attacker with these properties is
a blockwise-adaptive chosen-plaintext adversary (BACPA), a notion introduced in [16, 17]. The reason is
that SSL uses the CBC mode erroneously under consideration of BACPA: the protocol treats the whole
data exchanged in one session as a single plaintext. However, instead, each packet would have to be treated
as a new message and a new unpredictable initialization vector would have to be used. Figure 1 depicts
how the corresponding attack against CBC works in general.

This limits the on-line property of CBC to a certain extend: if ciphertext becomes known publicly (which
is compliant to the idea of on-line encryption), then there must be no way for a hostile party to influence
the further plaintext of the current encryption. The straightforward countermeasure would be to use a new
initialization vector whenever an “outside” influence on the plaintext is possible. But then the ciphertext
is larger than the plaintext by more than a constant value, thus this aspect of the on-line property is lost.
Another countermeasure is to use a stream-cipher (mode), for instance CTR, or CFB[18], which do not
suffer from the vulnerability against BACPA. Further secure alternatives involving modified versions of CBC
are presented in [18, 19].

6.2. Dangers of Encrypting Compressed Data

The problem resulting from the endangerment of confidentiality of data which was compressed prior to
being encrypted is very simple to understand: As stated in Section 2.1, encryption does not cover the
problem of hiding the length of the data that is being encrypted. This can be a problem by itself, as
corroborated in Section 2.1, but when applying compression before encryption, also messages of equal
length may lead to ciphertexts of different length, depending on the compressibility of their content[20]1.
If the attacker knows parts of the plaintext or can influence them, he may be able to deduce whether
other parts of the plaintext (partially) match the known part. Putting it very simply: Encryption does not

1In the reference, this type of vulnerability is classified as a side-channel vulnerability. We strongly object to this classification,
because “side-channel” refers to the channel through which information is gained, i.e. it indicates that an attacker needs
information other than what is publicly transmitted. The length of the transmitted data is clearly available in the “main-
channel”.

10

Technical Report: Applying Symmetric Encryption
Version 1.2

Cj−1

Pj

⊕

Cj

E

. . .

Cl

Pl+1

Cj−1 ⊕ Cl ⊕ Ptest =

Cl+1

⊕

E

=?

Cj

then Pj = Ptest

...

Figure 1: Depiction of BACPA attack against a CBC encryption as described in [14]. After having seen
ciphertexts up to Cl, the attacker makes use of his knowledge that the subsequent plaintext
block will be encrypted with Cl as IV. His aim is to decrypt the previous plaintext block Pj

encrypted under the same key (in the case of SSL, it has to be from the same SSL session). He
must know a great portion of the actual plaintext of Pj , since on average he has to run n/2
attempts of the following attack steps, where n is the number of remaining possible values for
Pj from his point of view. Furthermore, he must be able to control the contents of the first
block of subsequent messages. He iterates through these possible values as Ptest and provokes
the plaintext Pl+1 = Cj−1⊕Cl⊕Ptest to be encrypted for each such Ptest. Simple algebra shows
that if Cl+1 = Cj , then Pj = Ptest and the attacker has determined the missing information from
Pj .

11

Technical Report: Applying Symmetric Encryption
Version 1.2

hide the length of messages, compression translates content relations to output size, thus taken together,
content relations are leaked. A concrete attack that exploits this problem in SSL is CRIME [21].

In general, like the attacks from the preceding section, only low entropy strings can be attacked. However,
determining whether this is a risk or not is difficult to assess. Thus, as a consequence, compression should
not be applied to data that is encrypted.

7. Known Plaintext Attacks

Basically, any chosen plaintext attack also works as a known plaintext attack, if the variations of the
plaintext the attacker would introduce can be achieved by other means. Assume for instance the problem
with compression and encryption described in Section 6.2. Assume that an otherwise secure protocol
compresses messages sent to large number of users before encrypting them in CTR mode2. Let us assume
that these messages contain the current date and a secret four digit PIN numbers and no or little other
information. Clearly, the current date is known plaintext and on 2012-12-12 the attacker might be able to
identify those messages that contain PIN numbers such as 2012, 1212, etc., since a compression algorithm
will compress the repeated numbers better than others. If the messages are short enough, with detailed
knowledge of the employed compression algorithm, the attacker will end up with a lot of information about
certain messages, i.e PIN numbers.

8. (Adaptive) Chosen Ciphertext Attacks

In this section it is discussed why the authenticity of plaintexts is not only necessary to prevent the
acceptance of forged messages by the receiver, but also for confidentiality in general. We only discuss
the generic construction of Authenticated Encryption by combining encryption in a standard BCM with a
MAC, but basically all the discussed aspects apply to the dedicated Authenticated Encryption modes as
well.

Adaptive chosen ciphertext attacks are attacks that are, at least in the case of symmetric encryption,
aimed at recovering the message to a ciphertext the adversary has gotten hold of. The attacker then makes
use of a decryption oracle – in most cases a server, which is the legitimate addressee of the original message.
The adversary modifies the original ciphertext and feeds it to the server which decrypts the ciphertext. From
explicit error messages and/or timing delays of the server’s answers to repeated differently modified versions
of the ciphertext, the attacker can get information about the contents of the modified plaintext. In many
scenarios, full decryption of the ciphertext is possible. One such scenario is given in the following subsection.

8.1. Avoiding Padding Oracles

When using a block cipher to encrypt a message, in the CBC mode of operation the message has to be
padded to a multiple of the block cipher block size before the encryption procedure can be carried out. An
exception is the application of ciphertext stealing [22].

To this end, a so called padding scheme has to be applied to the message. There exist a number of such
schemes, one prominent example is PKCS#7 padding [23]. In this padding, if the last message block has
n unused bytes, these bytes are all set to the value n. If n = 0, then a whole message block is appended,
each byte having the numeric value of the number of bytes per block for the employed block cipher.

After the decryption, the receiver removes the padding in a straightforward way. However, padding
scheme specifications demand an error to be indicated in case of invalid padding. For the above example,
this would for instance be the case if in the plaintext the last block’s last byte has value n, but at least one

2Assuming a stream cipher mode makes the attack easier, as a “real” block cipher mode such as CBC only reveals the number
of blocks, not the number of bytes of a plaintext.

12

Technical Report: Applying Symmetric Encryption
Version 1.2

0|| . . . ||0||X⊕
Cf−1 Cf

⊕⊕

Pf−1

DD

Pf

. . . ||2||2

. . . ||2||1

“Hello. . . ”

corrupted

. . .

Figure 2: Depiction of a padding oracle attack against CBC with PKCS#7 padding assuming a block with
block size of eight bytes, the individual bytes of which are indicated by subscripts; e.g., the first
byte of block P is (P)0. Original ciphertext blocks are shown in blue, original plaintext blocks
in blue and green. At the top, the modifications introduced by the attacker are shown in red, at
the bottom, the resulting modified plaintext is shown in the same colour. The attacker takes an
original ciphertext and creates modified versions of it by xoring a block with a varying non-zero
value in the last byte X (shown in red) to the next to last block Cf−1. The result is a completely
corrupted plaintext block Pf−1, i.e. it takes on pseudorandom values, and a value of P ′f wich
differs from the original block Pf only in the last byte. Let us first assume that the original length
of the padding is different from one. In the depicted example, for non-zero values of X, the
padding oracle indicates correct padding when X ⊕ (Cf−1)7 = 0x01 as the only correct solution
when trying X = 0x03 and thus (Cf−1)7 = 0x02 is the original padding length. To test whether
the original padding length is one, prior to the above tests, the attacker can for instance toggle
the byte before (Cf−1)7, if this does not cause padding errors, he knows the original padding
length is one.

of the last n bytes does not have value n. Another error condition would be the last byte having a value
larger than the number of bytes per block.

In case of unauthenticated encryption, an attacker can build an attack allowing him to decrypt whole
ciphertexts if he has access to a padding oracle, i.e. a device that decrypts the ciphertexts and returns an
eventual padding error. Such attacks were first described by Vaudenay [24]. Figures 2 and 3 explain how
these attacks can be conducted. They potentially lead to the decryption of the whole ciphertext.

Padding oracle attacks building on the evaluation of error messages that reveal whether a padding error
occurred, belong to the class of fault attacks. If the attack relies on the timing delay of an unspecific error
message (which in itself does not allow the distinction between padding and MAC errors), which will be
shorter for a padding error than for MAC failure, then it belongs to the class of timing attacks, which is a
type of side channel attack.

It turns out that vulnerabilities of this type are still found in field, despite the fact that they are known
for such a long period of time, allowing practical attacks [25].

Authenticated Encryption solves this problem, but certainly only if the authenticity of the message is

13

Technical Report: Applying Symmetric Encryption
Version 1.2

. . . ||Y ||1||1

⊕
Cf−1 Cf

⊕⊕

Pf−1

DD

Pf

. . . ||?||2||2

. . . ||?||3||3

. . .

corrupted

. . .

Figure 3: Continuation of the padding oracle attack: After having determined the last byte of the last
block, the attacker determines the values of the remaining unknown bytes of the last block (he
knows already all the padding bytes). In the example, the original padding length was 2, thus
the next unknown byte from the end is (Cf−1)5. The attacker chooses modification bytes 0x01
which take the two padding bytes from value 0x02 to 0x03. This results in the last byte before
the padding to cause padding errors if has a value different from 0x03. The value Y is varied
until no padding error happens when the message is decrypted. In this manner, all the bytes of
last block can be determined. Furthermore, due to the block reordering properties of CBC, any
other block from the original ciphertext (i.e. encrypted under the same key in the CBC mode)
can be placed as the last block; also moving its preceding block with it, i.e. to Cf−1, ensures that
it is decrypted correctly in the CBC mode. This method even works when the attacker cannot
control the expected length of the message (in which case he could simply cut off the ciphertext
at the desired block), for instance because it is fixed from the point of view of the receiving side.
In this way, the complete ciphertext can be decrypted.

14

Technical Report: Applying Symmetric Encryption
Version 1.2

verified prior to the removal of the padding, this is addressed in the following subsection.

8.2. The Order of Decryption and MAC Verification

In Section 5 it was stated that the Encrypt-then-MAC variant is the preferred choice over MAC-then-
Encrypt when it comes to build an Authenticated Encryption scheme from a BCM and a MAC algorithm.
But note that it is possible to have implementations of either method that are secure and insecure with
respect to padding oracle attacks (introduced in Section 8.1):

Given the Encrypt-then-MAC construction, the secure decryption operation is given by first verifying the
MAC, then performing decryption and finally performing the unpadding. However, checking the padding
and indicating an error is possible after decryption, which is always independent of having verified the MAC,
thus it is also possible to create vulnerable implementations of the decryption in the Encrypt-then-MAC
construction.

Concerning the MAC-then-Encrypt construction, it is much more difficult to create an implementation
which does not leak plaintext information via timing. Clearly, if the MAC is over the plaintext, the padding
has to be removed before the MAC can be verified. Thus, in this case, it is highly important to perform
the unpadding operation in a constant time manner, i.e. having a timing indepent of the actual number of
padding bytes and the validity of the padding. By suppressing a possible padding error and carrying out the
MAC verification unconditionally, again, in a manner that is independent of the actual number of padding
bytes, (which influence the number of bytes fed into the MAC computation and thus per se the timing
of the MAC computation), it is possible to reach timing security. As a matter of fact, this complicated
procedure is necessary to reach secure implementations of TLS in certain configurations [26].

8.3. Decryption in Authenticated Encryption is not on-Line

It is important to understand that decryption in Authenticated Encryption may be on-line only in a very
limited way: the decrypted plaintext depends on the authentication block which can only be verified when
the whole ciphertext has been received. This is because of the way Authenticated Encryption is defined: if
the authentication fails, no plaintext may be output. Violations of this rule potentially enable application
oracle attacks, where application processing and corresponding error messages (or timing effects) function
analogously to the processing of the padding in padding oracle attacks. An example for this is [1].

It is important to understand the difference concerning this issue in view of the two different security
goals provided by the authentication: ensure authenticity in general and confidentiality in the presence of
decryption oracles.

For the first goal of authenticity it is tolerable to process parts of the plaintext before its authenticity
has been verified. This can be delayed until just before letting the plaintext “take effect”, the meaning of
which certainly depends on the application context. It could for instance mean a database transaction or
the booking of a money order. In this sense we will refer to this security goal as “effective authenticity”.

But for the second goal, confidentiality with respect to decryption oracles, it would only be tolerable
to process parts of the yet unauthenticated plaintext if it could be ensured that this very processing does
not provide such an oracle. This, however, is in general a futile task because it means carrying such
notions as security against side channel and fault attacks from the cryptographic world into the world
of general applications. This would mean a side channel and fault attack secure implementation of the
application’s decoding and processing functionality, which we can consider as basically impossible in view
of the multitude of unavoidable conditional branching typically involved in these operations. Only in very
special cases of very simple operations on the plaintext this could be considered an option. Consequently, we
label this security goal as “operational authenticity”. Operational authenticity is given when only properly
authenticated data is being processed.

Figure 4 illustrates how correctly implemented Authenticated Encryption prevents decryption oracle
attacks and Figure 5 depicts the connection between effective and operational authenticity using the

15

Technical Report: Applying Symmetric Encryption
Version 1.2

Figure 4: Depiction of order of steps in decryption in Authenticated Encryption to ensure confidentiality.

example of typical APIs of cryptographic libraries, the caveats of which are discussed in Appendix A.
Especially in the context of memory-constrained devices, one must assume a great temptation to wrongly

implement Authenticated Encryption, since processing the plaintext as it becomes available is the only way
to deal with messages that exceed the device’s memory. In such cases it is strongly recommended to break
down of the message into chunks that can be processed in the whole and are authenticated individually.

9. Hybrid Encryption

Hybrid Encryption is the term for the public key encryption of a symmetric key which in turn is used to
encrypt the actual message. This is the preferred approach to the encryption of messages that exceed the
capacity of public key plaintexts. It goes without saying that in this case the use of Authenticated Encryption
is also mandatory. Using a public key scheme secure against adaptive chosen ciphertext attacks such as
RSA-OAEP [27] together with unauthenticated encryption would be one of the most ironic constructions in
cryptography that can be thought of: the adaptive chosen ciphertext vulnerability of padding or application
processing of the plaintext would be left unaddressed while for symmetric key encryption with public key
cryptosystems, much simpler schemes achieve security against these kinds of attack, for instance “Simple
RSA” [28].

10. Conclusion

This work addresses the most prevalent security flaws that can be found in message encryption in applica-
tions and frameworks. As stated in the introduction, it is hard to get this understanding from current text
books, as they do not treat the matter in a concise and focussed manner and usually do not make the clear

16

Technical Report: Applying Symmetric Encryption
Version 1.2

n bytesciphertext

write()

read()

Decryptor

Object

n bytesplaintext

time... tag

...

write()

integrity failure

Application Processing

observable

behaviour

effect of the

plaintext

goal of

authenticity

goal of

confidentiality

exception

Figure 5: Depiction of general decryption oracles during on-line decryption of Authenticated Encryption
ciphertexts using the example of the typical API of cryptographic libraries. The problem arises
if parts of the plaintext are processed in an on-line manner by the next layer above the crypto-
graphic one, which we unambiguously label as the application layer, before the authenticity of the
ciphertext has been verified. Then, application errors arising during the processing of adaptively
manipulated ciphertext may be revealed to an adversary, either through concrete error messages
or through timing effects, allowing him to get information about the message content by and by,
often leading to full decryption of messages. Note that in this example, contrasting to the goal of
confidentiality, the goal of authenticity is reached, because the plaintext is prevented from taking
effect.

17

Technical Report: Applying Symmetric Encryption
Version 1.2

distinction between internals of primitives, which are completely irrelevant to most software designers, and
their correct application in protocols.

Summarizing the most important facts this work reviews we can give the following instructions for
building secure protocols for encrypted and necessarily also authenticated messages:

1. Use Authenticated Encryption (either by combining a MAC with a BCM or using a dedicated Au-
thenticated Encryption mode) (Section 2.2)

2. Adhere to requirements for the nonce and IV generation given in the respective standard (Section
2.4).

3. If padding of the message is part of the scheme (for instance when using CBC), make sure that
the authenticity of the message is verified prior to the processing of the padding during decryption
(Section 8.1).

4. Do not process any part of the decrypted message before the authenticity has been verified (Section
8.3).

5. Make sure that the length of the ciphertext does not provide any significant information to an adver-
sary (Section 2.1). To generically complicate attacks that exploit the length leakage of ciphertexts,
a generic countermeasure can be realized by adding a string of a few bytes of random length to the
plaintext at the protocol layer.

6. Do not compress messages prior to encryption. This requirement should only be dropped if thorough
analysis shows that attacks against low entropy strings are not possible in the respective application
(Section 6.2). The generic countermeasure proposed in the previous item can also be considered, but
then it is important to use (pseudo) random fill bytes, as for instance a string of zero bytes might be
compressed very efficiently and the compressed length might be independent of its original length.

7. If CBC is used, one has to be aware of the restricted on-line property of CBC encryption in the
presence of blockwise adaptive adversaries (Section 6.1).

References

[1] Jager, T., Somorovsky, J.: How to break XML encryption. In: Proceedings of the 18th ACM
conference on Computer and communications security. CCS ’11, New York, NY, USA, ACM (2011)
413–422

[2] Ferguson, N., Schneier, B., Kohno, T.: Cryptography Engineering. John Wiley & Sons, Inc. (2010)

[3] Morris Dworkin: Special Publication 800-38A 2001 Edition – Recommendation for Block Cipher
Modes of Operation (2001)

[4] Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Fast Software Encryption
(FSE) 2004. (2004)

[5] Morris Dworkin: NIST Special Publication 800-38C – Recommendation for Block Cipher Modes of
Operation: The CCM Mode for Authentication and Confidentiality (2004)

[6] Morris Dworkin: NIST Special Publication 800-38D – Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC (2007)

[7] Rebeiro, C., Selvakumar, D., Devi, A.: Bitslice implementation of aes. In Pointcheval, D., Mu, Y.,
Chen, K., eds.: Cryptology and Network Security. Volume 4301 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2006) 203–212

18

Technical Report: Applying Symmetric Encryption
Version 1.2

[8] Dolev, D., Dwork, C., Naor, M.: Non-malleable Cryptography. SIAM Journal on Computing 3 2
(2000) 391–497

[9] Morris Dworkin: NIST Special Publication 800-38B – Recommendation for Block Cipher Modes of
Operation: The CMAC Mode for Authentication (2005)

[10] Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In:
CRYPTO ’96 Proceedings of the 16th Annual International Cryptology Conference on Advances in
Cryptology, Springer-Verlag (1996) 1–15

[11] Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed hashing for message authentication. In: IETF
RFC-2104. (1997)

[12] Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of
the generic composition paradigm. In: Proceedings of the 6th International Conference on the Theory
and Application of Cryptology and Information Security: Advances in Cryptology. ASIACRYPT ’00,
London, UK, Springer-Verlag (2000) 531–545

[13] Bodo Möller: OpenSSL email archive (2002) http://www.mail-archive.com/openssl-dev@

openssl.org/msg10664.html.

[14] Bard, G.V.: A challenging but feasible blockwise-adaptive chosen-plaintext attack on ssl. In: SE-
CRYPT 2006, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SECURITY AND
CRYPTOGRAPHY, SET’UBAL, INSTICC Press (2006) 7–10

[15] http://www.ekoparty.org/2011/juliano-rizzo.php

[16] Joux, A., Martinet, G., Valette, F.: Blockwise-adaptive attackers - revisiting the (in)security of some
provably secure encryption modes: Cbc, gem, iacbc. In: In Proceedings of Advances in Cryptology -
Crypto 2002, LNCS 2442, Springer-Verlag (2002) 2002

[17] Bellare, M., Kohno, T., Namprempre, C.: Provably Fixing the SSH Binary Packet Protocol (2002)

[18] Pierre-alain Fouque, Gwenaëlle Martinet and Guillaume Poupard: Practical symmetric on-line encryp-
tion. In: In Lecture Notes in Computer Science. Advances in Cryptology – FSE’03, Springer-Verlag
(2003)

[19] Rogaway, P., Wooding, M., Zhang, H.: The Security of Ciphertext Stealing. In Canteaut, A., ed.: Fast
Software Encryption. Volume 7549 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2012) 180–195 slides available at fse2012.inria.fr/SLIDES/48.pdf.

[20] Kelsey, J.: Compression and information leakage of plaintext. In: Revised Papers from the 9th
International Workshop on Fast Software Encryption. FSE ’02, London, UK, UK, Springer-Verlag
(2002) 263–276

[21] http://www.ekoparty.org/eng/2012/thai-duong.php

[22] Morris Dworkin: NIST Special Publication 800-38A – Recommendation for Block Cipher Modes of
Operation: Three Variants of Ciphertext Stealing for CBC Mode (2010)

[23] http://tools.ietf.org/html/rfc5652#section-6.3

[24] Vaudenay, S.: Security Flaws Induced by CBC Padding – Applications to SSL, IPSEC, WTLS. In:
Advances in Cryptology – EUROCRYPT 2002, Springer-Verlag (2002) 543–545

19

http://www.mail-archive.com/openssl-dev@openssl.org/msg10664.html
http://www.mail-archive.com/openssl-dev@openssl.org/msg10664.html
http://www.ekoparty.org/2011/juliano-rizzo.php
fse2012.inria.fr/SLIDES/48.pdf
http://www.ekoparty.org/eng/2012/thai-duong.php
http://tools.ietf.org/html/rfc5652#section-6.3

Technical Report: Applying Symmetric Encryption
Version 1.2

[25] Duong, T., Rizzo, J.: Cryptography in the Web: The Case of Cryptographic Design Flaws in ASP.NET.
In: Security and Privacy (SP), 2011 IEEE Symposium on. (May 2011) 481 –489

[26] AlFardan, N.J., Paterson, K.G.: Lucky Thirteen: Breaking the TLS and DTLS Record Protocols.
(2013)

[27] RSA Laboratories, RSA Security Inc., 20 Crosby Drive, Bedford, MA 01730 USA: RSAES-OAEP
Encryption Scheme (2000)

[28] David Pointcheval: How to encrypt properly with RSA RSA Laboratories’ Crypto-Bytes, 5(1) (Win-
ter/Spring 2002).

[29] The Botan Library: botan.randombit.net.

[30] The Crypto++ Library: www.cryptopp.com.

[31] BouncyCastle JCE Provider: http://www.bouncycastle.org/java.html.

A. Problematic Implementations of Authenticated Encryption in open
Source cryptographic Libraries

The Botan Library [29] offers a convenient mechanism to handle the encryption and decryption of data
streams. This is the so called Pipe API. If one writes code that for instance decrypts a stream of data in
the previously mentioned EAX mode, one creates a corresponding Pipe object in the C++ source code.
Then, one can call a write() function on this Pipe, and feed a part of the ciphertext. Afterwards, it is
possible to read as much of the decrypted plaintext as is available so far, the length of which depends on
the amount of ciphertext fed to the decryption pipe in an obvious way. This is done by calling a read()

function on this object.
The problem is that a manipulation of the ciphertext is not recognized until the last part of the ciphertext

is fed into the decryption pipe, as the integrity in EAX is provided by a MAC appended at the end of the
ciphertext. As a consequence, only when the whole ciphertext has been processed, an exception is thrown
by the write() function.

Thus in the Botan API, until the last ciphertext part is fed to the decryption pipe, calls to the read()

function actually return manipulated plaintext if the ciphertext was manipulated. We verified this in an
example implementation using version 1.7.2 of Botan. This of course implies the risk that the data is not
only decrypted, but the resulting plaintext is also further processed by the client application, which in turn
creates the threat of decryption oracles as presented in the previous sections. The EAX mode’s encryption
uses the CTR mode internally, which offers a plain XOR-homomorphicity without any corrupting properties,
thus in general allowing for oracle attacks. This is depicted in Figure 5.

While function names and call sequences are different in the Crypto++ Library [30] (also written in
C++), the problem is the same. We performed a test analogous to the one for the Botan Library using
the authenticated GCM mode. Our tests are based on version 5.6.1.

The same behavior can be observed in the Java Cryptographic Architecture (JCA), where it is also
possible to work on streams in basically the same manner as in the C++ libraries discussed. In the JCA,
the concrete implementations of cryptographic algorithms are provided by exchangeable modules, the so
called Cryptographic Providers. In our concrete test, we used the BouncyCastle Provider [31], version
1.45. It is probably not appropriate to blame the JCA itself for this, since it well allows to implement
Authenticated Encryption correctly. But it would be favorable if the JCA enforced the correct treatment
of Authenticated Encryption through the interface specification. We are not sure, however, if the concept
of the JCA would enable such a solution.

20

botan.randombit.net
www.cryptopp.com
http://www.bouncycastle.org/java.html

Technical Report: Applying Symmetric Encryption
Version 1.2

It is certainly arguable whether it is desirable to have a cryptographic library that hold backs the decrypted
plaintext until the MAC verification. In some scenarios, it might for instance be necessary to write the
decrypted plaintext onto the hard disk due to limitations of the available RAM. The main problem is a
missing distinction between interfaces that allow potentially dangerous access and should only be used by
experts, like the examples above, and interfaces that prevent erroneous use of this kind and consequently
certainly restrict the application programmer’s freedom to some extend.

21

	Introduction
	The most important Issues with the Application of Symmetric Encrytion
	Limitations of Cryptography
	Encryption is (almost) never enough
	Use a secure Standard Mode of Operation
	Use the chosen Mode of Operation correctly

	A Note on Storage Encryption
	Properties of Symmetric Encryption Schemes
	On-line Operations
	Random Access
	Initialization Vectors and Nonces
	Parallelization
	Precomputation
	Malleability
	Overview of the Standard Modes of Operation

	Message Authentication Codes
	Chosen Plaintext Attacks
	CBC's Vulnerability against Blockwise Adaptive Adversaries
	Dangers of Encrypting Compressed Data

	Known Plaintext Attacks
	(Adaptive) Chosen Ciphertext Attacks
	Avoiding Padding Oracles
	The Order of Decryption and MAC Verification
	Decryption in Authenticated Encryption is not on-Line

	Hybrid Encryption
	Conclusion
	Problematic Implementations of Authenticated Encryption in open Source cryptographic Libraries

