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Introduction

Code-based Cryptography employs error corrections codes

its security is based on the syndrome decoding problem

secure in the presence of quantum computers

Code-based Cryptosystems: McEliece and Niederreiter

both use the Patterson Algorithm in decryption

root-finding of polynomial over F2m
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Error Correcting Codes
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Goppa Codes

Parameters of a Goppa Code

irreducible polynomial g(Y ) ∈ F2m [Y ] of degree t (the Goppa
Polynomial)
support Γ = (α0, α1, . . . , αn−1), where αi are pairwise distinct
elements of F2m

Properties of the Code

the code has length n ≤ 2m (code word length) ,
dimension k = n −mt (message length) and
can correct up to t errors.
a parity check matrix H, where cH> = 0 if c ∈ C
example for secure parameters: n = 2048, t = 50 for 100 bit
security
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The McEliece PKC

key generation

choose the parameters n and t
generate randomly g(Y ) and Γ (determining the secret the
code)
for this private code Cs one has a private generator matrix Gs

the public key is Gp = [I|G ′p] = TGs

encryption: ~z = ~mGp + ~e, wt (~e) = t

decryption: knowing g(Y ) and Γ, ~e and thus also ~m can be
recovered
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The McEliece PKC
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Syndrome Decoding

secret key: g(Y ), Γ = {α0, α1, . . . , αn−1}
error vector ~e ∈ Fn

2m , wt (~e) = t chosen during encryption

S(Y )← (~e ⊕ ~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · ,Y , 1

)>
τ(Y )←

√
S−1(Y ) + Y mod g(Y ) // by EEA

(α(Y ), β(Y ))← EEA(g(Y ), τ(Y ))

σ(Y )← α2(Y ) + Y β2(Y )

ei ← 1 iff σ(αi ) = 0
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Previous Work

Biswas, Sendrier, PQCrypto 2008: HyMES McEliece
implementation

Strenzke, Tews, Molter, Overbeck, Shoufan, PQCrypto 2008:
message-aimed side-channel attack
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Exhaustive Evaluation with and without Division

σ(Y ) =
∏w−1

i=0 (αfi − Y )

Require: the polynomial σ(Y ) over F2m

Ensure: the set E , where γi is a root of σ(Y ) if and only if i ∈ E
1: E = ∅
2: for i = 0 up to i = n − 1 do
3: if σ(γi ) = 0 then
4: E ← E ∪ {i}
5: σ(Y )← σ(Y )/(Y ⊕ γi )
6: end if
7: end for
8: return E
→ eval-rf , eval-div-rf
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Berlekamp Trace Algorithm

Tr(Y ) = Y + Y 2 + Y 22 + . . .+ Y 2m−1
, and {β1, β2, . . . , βm}

is a standard basis of F2m .

initial call: BTA(σ(Y ), 1)

algorithm BTA(Ω(Y ), i) :

1: if deg (Ω(Y ) ≤ 1) then
2: return root of Ω(Y )
3: end if
4: Ω0(Y )← gcd(Ω(Y ),Tr(βi · Y ))
5: Ω1(Y )← gcd(Ω(Y ), 1 + Tr(βi · Y ))
6: return BTA(Ω0(Y ), i + 1)∪BTA(Ω1(Y ), i + 1)

→ BTA-rf
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Berlekamp Trace Algorithm - Hybrid Algorithms

Biswas, Herbert 2009: improvement of BTA with root-finding
algorithms for low degrees

efficient root-finding for degree 2 with lookup tables

→ BTZ2-rf
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Root Finding with Linearized Polynomials

Definition

linearized polynomial: L(Y ) =
∑

i LiY
2i , where Li ∈ F2m .

Definition

affine polynomial: A(Y ) = L(Y ) + β with β ∈ F2m

Federenko, Trifonov 2002:

A(xi ) = A(xi−1) + L(∆i ),∆i = xi − xi−1 = αδ(xi ,xi−1),

where {α0, α1, . . . , αm−1} is a standard basis of F2m and
wt (xi ⊕ xi−1) = 1
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Root Finding with Linearized Polynomials

f (Y ) = f3Y
3 +

d(t−4)/5e∑
i=0

Y 5iAi (Y ), (1)

where

Ai (Y ) = f5i +
3∑

j=0

f5i+2jY
2j . (2)

→ dcmp-rf
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Root Finding with Linearized Polynomials – Hybrid Variant

dcmp-div-rf : perform divisions by found roots (after each 5
roots)
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Side Channel Security Aspects of Root Finding

Only timing attacks

Message-aimed attacks: observe decryption and recover
message

Key-aimed attacks: observe decryption and recover key
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Previously Known Message-aimed Attacks

deg (σ(Y )) = wt (~e) when wt (~e) ≤ t

→ known TA against eval-rf :

decryption time ∼ wt (~e)
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Previously Known Message-aimed Attacks
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Vulnerability of eval-div-rf

countermeasure against this vulnerability:

ensure deg (σ(Y )) = t

number of roots very small when wt (~e) > t

also for wt (~e) < t due to countermeasure

→ number of roots very small when wt (~e) 6= t
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Vulnerability of eval-div-rf

remaining vulnerability of eval-div-rf (t = 33):

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 20  25  30  35  40

c
y
c
le

s
 t
a
k
e
n
 b

y
 e

v
a
l-
d
iv

-r
f

error weight w

number of roots very small when wt (~e) 6= t
→ two-bit-flip attack is still successful:
attacker learns when he flipped one error and one non-error
position
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Vulnerability of BTA-rf
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Error Positions and Support Elements

~e = ( 0 0 . . . 0 1 0 . . . 0 1 0 . . . )
indexes: 0 1 . . . f1 f2

αf1 αf2

σ(Y ) =
∏w−1

i=0 (αfi − Y )

Γ = {α0, α1, . . . αn−1}
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Vulnerability of eval-div-rf

implementation evaluates σ(Y ) in order 0, 1, x , x + 1, . . .
(lexicographical ordering)
“support-scan”: t − 1 error positions fixed and the t − th
position varies (same order)
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Vulnerability of BTA-rf ?
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Parameters and Platforms

n = 2960, t = 56 with more than 122 bit security

Atmel AVR32 AP7000
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Performance – Decryption Time
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2
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Performance – Code Size

Bytes
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Performance – RAM Usage

Bytes
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Conclusion

many side-channel security issues in root-finding algorithms

performance result: high RAM demands of BTA-rf

dcmp-rf offers both side-channel security and good
performance

hardware implementation: parallelization issues
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Thank you!

download the McEliece implementation and these slides:
http://crypto-source.de
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