
Fast and Secure Root Finding for Code-based
Cryptosystems

Falko Strenzke

Cryptography and Computeralgebra, Department of Computer Science,
Technische Universität Darmstadt, Germany,

fstrenzke@crypto-source.de

April 13, 2015

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 1 / 38

fstrenzke@crypto-source.de

Introduction

Code-based Cryptography employs error corrections codes

its security is based on the syndrome decoding problem

secure in the presence of quantum computers

Code-based Cryptosystems: McEliece and Niederreiter

both use the Patterson Algorithm in decryption

root-finding of polynomial over F2m

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 2 / 38

1 Introduction

2 Preliminaries

3 Previous Work

4 Variants of Root-finding

5 Side Channel Security Aspects of Root Finding
Message-aimed Attacks
Key-aimed Attacks

6 Performance

7 Conclusion

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 3 / 38

1 Introduction

2 Preliminaries

3 Previous Work

4 Variants of Root-finding

5 Side Channel Security Aspects of Root Finding
Message-aimed Attacks
Key-aimed Attacks

6 Performance

7 Conclusion

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 4 / 38

Error Correcting Codes

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 5 / 38

Goppa Codes

Parameters of a Goppa Code

irreducible polynomial g(Y) ∈ F2m [Y] of degree t (the Goppa
Polynomial)
support Γ = (α0, α1, . . . , αn−1), where αi are pairwise distinct
elements of F2m

Properties of the Code

the code has length n ≤ 2m (code word length) ,
dimension k = n −mt (message length) and
can correct up to t errors.
a parity check matrix H, where cH> = 0 if c ∈ C
example for secure parameters: n = 2048, t = 50 for 100 bit
security

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 6 / 38

The McEliece PKC

key generation

choose the parameters n and t
generate randomly g(Y) and Γ (determining the secret the
code)
for this private code Cs one has a private generator matrix Gs

the public key is Gp = [I|G ′p] = TGs

encryption: ~z = ~mGp + ~e, wt (~e) = t

decryption: knowing g(Y) and Γ, ~e and thus also ~m can be
recovered

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 7 / 38

The McEliece PKC

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 8 / 38

Syndrome Decoding

secret key: g(Y), Γ = {α0, α1, . . . , αn−1}
error vector ~e ∈ Fn

2m , wt (~e) = t chosen during encryption

S(Y)← (~e ⊕ ~c)H>︸ ︷︷ ︸
∈Ft

2m

(
Y t−1, · · · ,Y , 1

)>
τ(Y)←

√
S−1(Y) + Y mod g(Y) // by EEA

(α(Y), β(Y))← EEA(g(Y), τ(Y))

σ(Y)← α2(Y) + Y β2(Y)

ei ← 1 iff σ(αi) = 0

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 9 / 38

1 Introduction

2 Preliminaries

3 Previous Work

4 Variants of Root-finding

5 Side Channel Security Aspects of Root Finding
Message-aimed Attacks
Key-aimed Attacks

6 Performance

7 Conclusion

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 10 / 38

Previous Work

Biswas, Sendrier, PQCrypto 2008: HyMES McEliece
implementation

Strenzke, Tews, Molter, Overbeck, Shoufan, PQCrypto 2008:
message-aimed side-channel attack

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 11 / 38

1 Introduction

2 Preliminaries

3 Previous Work

4 Variants of Root-finding

5 Side Channel Security Aspects of Root Finding
Message-aimed Attacks
Key-aimed Attacks

6 Performance

7 Conclusion

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 12 / 38

Exhaustive Evaluation with and without Division

σ(Y) =
∏w−1

i=0 (αfi − Y)

Require: the polynomial σ(Y) over F2m

Ensure: the set E , where γi is a root of σ(Y) if and only if i ∈ E
1: E = ∅
2: for i = 0 up to i = n − 1 do
3: if σ(γi) = 0 then
4: E ← E ∪ {i}
5: σ(Y)← σ(Y)/(Y ⊕ γi)
6: end if
7: end for
8: return E
→ eval-rf , eval-div-rf

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 13 / 38

Berlekamp Trace Algorithm

Tr(Y) = Y + Y 2 + Y 22 + . . .+ Y 2m−1
, and {β1, β2, . . . , βm}

is a standard basis of F2m .

initial call: BTA(σ(Y), 1)

algorithm BTA(Ω(Y), i) :

1: if deg (Ω(Y) ≤ 1) then
2: return root of Ω(Y)
3: end if
4: Ω0(Y)← gcd(Ω(Y),Tr(βi · Y))
5: Ω1(Y)← gcd(Ω(Y), 1 + Tr(βi · Y))
6: return BTA(Ω0(Y), i + 1)∪BTA(Ω1(Y), i + 1)

→ BTA-rf

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 14 / 38

Berlekamp Trace Algorithm - Hybrid Algorithms

Biswas, Herbert 2009: improvement of BTA with root-finding
algorithms for low degrees

efficient root-finding for degree 2 with lookup tables

→ BTZ2-rf

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 15 / 38

Root Finding with Linearized Polynomials

Definition

linearized polynomial: L(Y) =
∑

i LiY
2i , where Li ∈ F2m .

Definition

affine polynomial: A(Y) = L(Y) + β with β ∈ F2m

Federenko, Trifonov 2002:

A(xi) = A(xi−1) + L(∆i),∆i = xi − xi−1 = αδ(xi ,xi−1),

where {α0, α1, . . . , αm−1} is a standard basis of F2m and
wt (xi ⊕ xi−1) = 1

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 16 / 38

Root Finding with Linearized Polynomials

f (Y) = f3Y
3 +

d(t−4)/5e∑
i=0

Y 5iAi (Y), (1)

where

Ai (Y) = f5i +
3∑

j=0

f5i+2jY
2j . (2)

→ dcmp-rf

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 17 / 38

Root Finding with Linearized Polynomials – Hybrid Variant

dcmp-div-rf : perform divisions by found roots (after each 5
roots)

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 18 / 38

1 Introduction

2 Preliminaries

3 Previous Work

4 Variants of Root-finding

5 Side Channel Security Aspects of Root Finding
Message-aimed Attacks
Key-aimed Attacks

6 Performance

7 Conclusion

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 19 / 38

Side Channel Security Aspects of Root Finding

Only timing attacks

Message-aimed attacks: observe decryption and recover
message

Key-aimed attacks: observe decryption and recover key

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 20 / 38

1 Introduction

2 Preliminaries

3 Previous Work

4 Variants of Root-finding

5 Side Channel Security Aspects of Root Finding
Message-aimed Attacks
Key-aimed Attacks

6 Performance

7 Conclusion

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 21 / 38

Previously Known Message-aimed Attacks

deg (σ(Y)) = wt (~e) when wt (~e) ≤ t

→ known TA against eval-rf :

decryption time ∼ wt (~e)

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 22 / 38

Previously Known Message-aimed Attacks

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 23 / 38

Vulnerability of eval-div-rf

countermeasure against this vulnerability:

ensure deg (σ(Y)) = t

number of roots very small when wt (~e) > t

also for wt (~e) < t due to countermeasure

→ number of roots very small when wt (~e) 6= t

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 24 / 38

Vulnerability of eval-div-rf

remaining vulnerability of eval-div-rf (t = 33):

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 20 25 30 35 40

c
y
c
le

s
 t
a
k
e
n
 b

y
 e

v
a
l-
d
iv

-r
f

error weight w

number of roots very small when wt (~e) 6= t
→ two-bit-flip attack is still successful:
attacker learns when he flipped one error and one non-error
position

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 25 / 38

Vulnerability of BTA-rf

 1.9e+06

 1.95e+06

 2e+06

 2.05e+06

 2.1e+06

 2.15e+06

 2.2e+06

 2.25e+06

 2.3e+06

 2.35e+06

 20 25 30 35 40

c
y
c
le

s
 t
a
k
e
n
 b

y
 b

ta
-r

f

error weight w

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 26 / 38

1 Introduction

2 Preliminaries

3 Previous Work

4 Variants of Root-finding

5 Side Channel Security Aspects of Root Finding
Message-aimed Attacks
Key-aimed Attacks

6 Performance

7 Conclusion

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 27 / 38

Error Positions and Support Elements

~e = (0 0 . . . 0 1 0 . . . 0 1 0 . . .)
indexes: 0 1 . . . f1 f2

αf1 αf2

σ(Y) =
∏w−1

i=0 (αfi − Y)

Γ = {α0, α1, . . . αn−1}

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 28 / 38

Vulnerability of eval-div-rf

implementation evaluates σ(Y) in order 0, 1, x , x + 1, . . .
(lexicographical ordering)
“support-scan”: t − 1 error positions fixed and the t − th
position varies (same order)

 2.05e+06

 2.06e+06

 2.07e+06

 2.08e+06

 2.09e+06

 2.1e+06

 2.11e+06

 2.12e+06

 2.13e+06

 2.14e+06

 2.15e+06

 0 100 200 300 400 500 600

c
y
c
le

s
 t
a
k
e
n
 b

y
 r

o
o
t-

fi
n
d
in

g

lex(αft
)

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 29 / 38

Vulnerability of BTA-rf ?

 2.08e+06

 2.1e+06

 2.12e+06

 2.14e+06

 2.16e+06

 2.18e+06

 2.2e+06

 2.22e+06

 2.24e+06

 0 100 200 300 400 500 600

c
y
c
le

s
 t
a
k
e
n
 b

y
 r

o
o
t-

fi
n
d
in

g

lex(αft
)

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 30 / 38

1 Introduction

2 Preliminaries

3 Previous Work

4 Variants of Root-finding

5 Side Channel Security Aspects of Root Finding
Message-aimed Attacks
Key-aimed Attacks

6 Performance

7 Conclusion

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 31 / 38

Parameters and Platforms

n = 2960, t = 56 with more than 122 bit security

Atmel AVR32 AP7000

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 32 / 38

Performance – Decryption Time

ms

1

2
Decryption Time on AP7000 @ 30 MHz

1.42

eval-
rf

0.90

eval-
div-rf

1.00

BTA-
rf

0.82

BTZ2-rf

0.95

dcmp-rf

0.77

dcmp-div
-rf

cycles

1·106

2·106
Decryption Cycles on Intel Core2 Duo2.12·106

eval-
rf

1.63·106

eval-
div-rf

0.88·106

BTA-
rf

0.63·106

BTZ2-rf

0.65·106

dcmp-rf

0.54·106

dcmp-div
-rf

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 33 / 38

Performance – Code Size

Bytes

10, 000

20, 000

30, 000

Code size on AP7000

2.35·104

eval-
rf

2.35·104

eval-
div-rf

2.87·104

BTA-
rf

3.04·104

BTZ2-rf

2.92·104

dcmp-rf

2.92·104

dcmp-div
-rf

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 34 / 38

Performance – RAM Usage

Bytes

1, 000

2, 000

Stack usage AP7000

0.72·103

eval-
rf

0.72·103

eval-
div-rf

1.98·103

BTA-
rf

1.88·103

BTZ2-rf

0.72·103

dcmp-rf

0.78·103

dcmp-div
-rf

Bytes

10, 000

Heap usage AP7000

0.066·104

eval-
rf

0.066·104

eval-
div-rf

0.926·104

BTA-
rf

0.926·104

BTZ2-rf

0.066·104

dcmp-rf

0.082·104

dcmp-div
-rf

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 35 / 38

1 Introduction

2 Preliminaries

3 Previous Work

4 Variants of Root-finding

5 Side Channel Security Aspects of Root Finding
Message-aimed Attacks
Key-aimed Attacks

6 Performance

7 Conclusion

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 36 / 38

Conclusion

many side-channel security issues in root-finding algorithms

performance result: high RAM demands of BTA-rf

dcmp-rf offers both side-channel security and good
performance

hardware implementation: parallelization issues

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 37 / 38

Thank you!

download the McEliece implementation and these slides:
http://crypto-source.de

Fast and Secure Root Finding for Code-based Cryptosystems Falko Strenzke 38 / 38

http://crypto-source.de

	Introduction
	Preliminaries
	Previous Work
	Variants of Root-finding
	Side Channel Security Aspects of Root Finding
	Message-aimed Attacks
	Key-aimed Attacks

	Performance
	Conclusion

