An Analysis of OpenSSL's Random Number
Generator

Eurocrypt 2016

Falko Strenzke

- cryptosource

cryptosource GmbH,
Darmstadt

fstrenzke@cryptosource.de

(©Falko Strenzke, cryptosource GmbH 2016

September 14, 2016
An Analysis of OpenSSL's RNG

=]
Falko Strenzke

=

- cryptosource

1/34


fstrenzke@cryptosource.de

o Software-based RNG's use pseudo random number generators
(PRNGs)

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

2 /34



o Software-based RNG's use pseudo random number generators
(PRNGs)
o but are not PRNGs

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

2 /34



o Software-based RNG's use pseudo random number generators
(PRNGs)
o but are not PRNGs

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

2 /34



o Software-based RNG's use pseudo random number generators
(PRNGs)
o but are not PRNGs

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

2 /34



o Software-based RNG's use pseudo random number generators
(PRNGs)
o but are not PRNGs

seed

RAND_add (buffer, estimated entopy)

state |

RAND bytes (buffer),

RNG

RAND_pseudo_bytes (buffer)

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

2 /34



application

random numbers

OpenSSL RNG

seed

OS RNG

/ | \

entropy source entropy source entropy source

[m] = = =

DA

An Analysis of OpenSSL's RNG Falko Strenzke -w 3 /34




o forward security

output

recover

state compromise

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

4 /34



o forward security

| output |

recover

state compromise

o backward security

state compromise

recover

output

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

4 /34



o forward security

recover 0

o backward security

state compromise

recover

output

o don't leak any information about state in output

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

4 /34



Low Entropy Secret Leakage

An Analysis of OpenSSL's RNG

Falko Strenzke

[m]

=

- cryptosource

DA

5 /34




t

OpenSSL RNG

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

6 /34



application
RAND_add ()

OpenSSL RNG
H < 256 bit

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

6 /34



t
application
RAND-bytesO
RAND_add ()
RAND_pseudo_bytes ()
OpenSSL RNG
H < 256 bit

An Analysis of OpenSSL's RNG

Falko Strenzke

[m]

=

- cryptosource

DA

6 /34



application
RAND_add ()

RAND-bytesO

RAND_pseudo_bytes ()

OpenSSL RNG
H < 256 bit

H > 256 bit

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

6 /34



RAND_add ()

application
RAND-bytesO

RAND_pseudo_bytes ()

RAND_bytes ()

RAND _pseudo_bytes ()
OpenSSL RNG
H < 256 bit

H > 256 bit

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

6 /34



t

C oL RNG

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource




t

' OpenSSL RNG
H = 10 bits

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource




t
' application
secret seed

H = 15 bits

' OpenSSL RNG
H = 10 bits

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource




t
' application
secret seed
H = 15 bits
' OpenSSL RNG
H = 10 bits H = 25 bits

An Analysis of OpenSSL's RNG

Falko Strenzke

[m]

=

- cryptosource




t
' application
secret seed
H = 15 bits

RAND_pseudo_bytes ()

OpenSSL RNG
H = 10 bits

H = 25 bits

An Analysis of OpenSSL's RNG

Falko Strenzke

[m]

- cryptosource



Outputting Random Number—

t

' application
secret seed

H = 15 bits
CZ

H = 10 bits

RNG output, nonce

RAND_pseudo_bytes ()
OpenSSL RNG

H = 25 bits

An Analysis of OpenSSL's RNG

Falko Strenzke

[m]

- cryptosource



Outputting Random Number—

attacker
brute force 22° guess:

recover secre

application

RNG output, nonce
secret seed

H = 15 bits

RAND_pseudo_bytes ()

OpenSSL RNG
H = 10 bits

H = 25 bits

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource




o RAND pseudo_bytes generates output in the same way as
RAND_bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

8 /34



o RAND pseudo_bytes generates output in the same way as

RAND_bytes
o API documentation suggests to feed low-entropy secrets such
passwords
=] = = £ DAl
An Analysis of OpenSSL's RNG Falko Strenzke -w

8 /34



Potentially Leaked Secret_

o RAND pseudo_bytes generates output in the same way as
RAND_bytes

o API documentation suggests to feed low-entropy secrets such
passwords

o OpenSSL feeds the previous contents of buffers to be
randomized to RNG state (Debian issue in 2008)

= = = DA
An Analysis of OpenSSL's RNG Falko Strenzke -c-":l".[':’t°S°‘1|1|’-":e

8 /34



Potentially Leaked Secrets_

o RAND pseudo_bytes generates output in the same way as
RAND_bytes

o API documentation suggests to feed low-entropy secrets such
passwords

o OpenSSL feeds the previous contents of buffers to be
randomized to RNG state (Debian issue in 2008)

o previous contents could contain low entropy secrets by
themselves

[m] = = =

DA
An Analysis of OpenSSL's RNG Falko Strenzke -w 8 /34




Potentially Leaked Secrets _

o RAND pseudo_bytes generates output in the same way as
RAND_bytes

o API documentation suggests to feed low-entropy secrets such
passwords

o OpenSSL feeds the previous contents of buffers to be
randomized to RNG state (Debian issue in 2008)

o previous contents could contain low entropy secrets by
themselves

o overwriting secrets with random numbers is an established
practice

[m] = = =

DA

An Analysis of OpenSSL's RNG Falko Strenzke -w 8 /34




Potentially Leaked Secrets _

o RAND pseudo_bytes generates output in the same way as
RAND_bytes

o API documentation suggests to feed low-entropy secrets such
passwords

o OpenSSL feeds the previous contents of buffers to be
randomized to RNG state (Debian issue in 2008)

o previous contents could contain low entropy secrets by
themselves

o overwriting secrets with random numbers is an established
practice

o overwritten low entropy secrets may be leaked in output

o <& = = z 9ac

An Analysis of OpenSSL's RNG Falko Strenzke -w 8 /34




Core Cryptographic Function of OpenSSL’s
RNG

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

9/34




o custom design

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

10 / 34



o custom design
o (©1998

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

10 / 34



160
bits

ignoring: counters, PID

1023 state bytes
An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource

11 / 34




160
bits

ignoring: counters, PID

RAND_add, RAND_bytes

1023 state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource

11 / 34




160
bits

ignoring: counters, PID

RAND_add, RAND_bytes

1023 state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource

11 / 34




160 bits
*

160 J |
bits  [&*
g B ]
~
RAND_add
160
bits

ignoring: counters, PID

RAND_add, RAND_bytes

1023 state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource




160 bits

Core Cryptographic Function_
*

o e
— _/
~
RAND_add
160
bits

ignoring: counters, PID

RAND_add, RAND bytes

1023 state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource




160 bits

Core Cryptographic Function_
*——
bo

Y
28
— _/
~
RAND_add
160
bits

ignoring: counters, PID

RAND_add, RAND bytes

1023 state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource




160 bits

Core Cryptographic Function_
*——
bo
v

o e
[« ]
— _/
~
RAND_add
160
bits

ignoring: counters, PID

RAND_add, RAND bytes

1023 state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource




Core Cryptographic Functlon_

160 bits
!
So
— _/
~
RAND_add
160
bits

ignoring: counters, PID

RAND_add, RAND bytes

1023 state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource




Core Cryptographic Function _
|

160 bits
& | | b |
\i ¥
—
lla|6t(s) g SHAL SHAL

_/
RAND_add

é?tg ignoring: counters, PID
RAND_add, RAND_bytes

1023 state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource




160 bits

Core Cryptographic Function _
/_/H

I —r—
_____________ l_l

t1>|6t(s) e SHAL| @£
¥

[ 2 |

—

~
RAND_add

é?tg ignoring: counters, PID
RAND_add, RAND_bytes

1023 state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource




160 bits

Core Cryptographic Function o_
/_/H

80 bits
- |

|
160 :
bits

Y
SHAL| @£
¥
[ 2 | [ =
—
~
RAND_add

_/
~
RAND_bytes
é?tg ignoring: counters, PID
RAND_add, RAND_bytes

1023 state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource




Core Cryptographic Function o_
/_/H

160 bits 80 bits
)
___________ l - l
é.60 sHAL|@>| £
its —
B
| | 2 | [ = ]
_ N— _/
~ ~
RAND_add RAND_bytes
é?tg ignoring: counters, PID
RAND_add, RAND_bytes
1023 state bytes I
=] 5
An Analysis of OpenSSL's RNG Falko Strenzke

- cryptosource

11 / 34



160 bits

Core Cryptographic Function o_
/_/H

160

. . |
bits —

|- | » N
_ N— _/
VT VT
RAND_add RAND_bytes
é?tg ignoring: counters, PID
RAND_add, RAND_bytes
1023 state bytes I
o F
An Analysis of OpenSSL's RNG Falko Strenzke

- cryptosource

11 / 34



Core Cryptographic Function o_
/_/H

160 bits 80 bits
B —r— ?
""""""" 1 - l
tl)_60 sHAL|@>| £
its — S
i T
|- | » N
N\ _/
~N ~N
RAND_add RAND_bytes
é?tg ignoring: counters, PID
RAND_add, RAND_bytes
1023 state bytes I
o F
An Analysis of OpenSSL's RNG Falko Strenzke

- cryptosource

11 / 34



160 bits

Core Cryptographic Function o_
/_/H

80 bits
- |

160

b |
bits —

|- | 2 N
N\ _/
VT VT
RAND_add RAND_bytes
é?tg ignoring: counters, PID
RAND_add, RAND_bytes
1023 state bytes I
o F
An Analysis of OpenSSL's RNG Falko Strenzke

- cryptosource

11 / 34



160 bits

Core Cryptographic Function o_
/_/H

80 bits
- |

160

b |
bits —
>

|- | 2 N
N\ _/
VT VT
RAND_add RAND_bytes
é?tg ignoring: counters, PID
RAND_add, RAND_bytes
1023 state bytes I
o F
An Analysis of OpenSSL's RNG Falko Strenzke

- cryptosource

11 / 34



Core Cryptographic Function o_
160 bits

80 bits

160
bits

RAND_add

_/
RAND_bytes
é?tg ignoring: counters, PID
RAND_add, RAND_bytes

1023 state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource

11 / 34



Core Cryptographic Function of _

160 bits

160
bits

RAND_add RAND_bytes

éietg ignoring: counters, PID
RAND_add, RAND_bytes

| 1023 state bytes

An Analysis of OpenSSL's RNG Falko Strenzke [ cEyptosource 11/ 34



Core Cryptographic Function of _

160 bits 80 bits

160
bits

RAND_add RAND_bytes

éiﬁtg ignoring: counters, PID
RAND_add, RAND_bytes

| 1023 state bytes

An Analysis of OpenSSL's RNG Falko Strenzke [ cEyptosource 11/ 34



Core Cryptographic Function of _

160 bits

160
bits

RAND_add RAND_bytes

éiﬁtg ignoring: counters, PID
RAND_add, RAND_bytes

| 1023 state bytes

An Analysis of OpenSSL's RNG Falko Strenzke [ cEyptosource 11/ 34



Output Entropy Limitation Vulnerabilities

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

12 / 34




ELO240

RAND_add

RAND_add

1023 bytes state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource




ELO240

B

S

—

RAND_add RAND_add
initial seed

H = 256 bits
/—/H
I l 1023 bytes state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource

13 / 34



ELO240

B

S

—

RAND_add RAND_add
initial seed

H = 256 bitsl
/—/H
I 1023 bytes state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource

13 / 34



ELO240

g
&
—
RANV—\ RAND_add
initial seed | dummy add
H = 256 bitsJ H=
/—/H

1023 bytes state bytes

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource

13 / 34



ELO240

by

initial seed

dummy add
H = 256 bitsl H=0
I

l

1023 bytes state bytes

An Analysis of OpenSSL's RNG

=]
Falko Strenzke

=

- cryptosource

13 / 34




ELO240

by

initial seed

dummy add
H = 256 bitsl H=0
/—/H

1023 bytes state bytes

An Analysis of OpenSSL's RNG

=]
Falko Strenzke

=

- cryptosource

13 / 34




ELO240

by

initial seed

dummy add
H = 256 bitsl H=0
/—/H

1023 bytes state bytes

An Analysis of OpenSSL's RNG

=]
Falko Strenzke

=

- cryptosource

13 / 34




ELO240

by

initial seed

dummy add
H = 256 bitsl H=0
/—/H

1023 bytes state bytes

An Analysis of OpenSSL's RNG

=]
Falko Strenzke

=

- cryptosource

13 / 34




ELO240

by

initial seed | dummy add
H = 256 bitsl
/—/H

“stirring operation” (prior to first output production with RAND_bytes)
MY 0 LR D S
I l 1023 bytes state bytes I
I~ -
H = 160 bits

An Analysis of OpenSSL's RNG

=]
Falko Strenzke

=

- cryptosource

13 / 34




ELO240

by || b |
£ SHAL SHA &2 .—» E’—» SHAL
5 > S E
13 i T T
| ——0 ) i | e
— _ _/
V V
RAND_add RAND_bytes
initial seed | dummy add “stirring operation” (prior to first output production with RAND bytes)
bt A T R R TR R L R I S R I AL
— A
1023 bytes state bytes I
— >4
)T H = 160 bits

An Analysis of OpenSSL's RNG

=

- cryptosource

[m]

Falko Strenzke




ELO240

£ SHAL sHAL| @ & |- |shat é’-» SHAL|>H £
S > S E
13 ¢ U T ]o U
| © | | D | L= L= ] -
— _ _/
V V
RAND_add RAND_bytes
initial seed | dummy add  stirring operation” (prior to first output production with RAND_bytes)
bt A T R R TR R L R I R I AL >
/_/H
/ 1023 bytes state bytes I
L — >4
)T H = 160 bits

o =] = =

An Analysis of OpenSSL's RNG Falko Strenzke -Crwtosource




ELO240

pu
1
1
1 1
1
1
1
7 1
& *e*@‘:_g
1
1
1
1
1
1
1
1
[
%) 1
-~® =
Ll 1
? _1
Iput
(——bn
I
H
|| I_é‘lpm:a

RAND_add

RAND_bytes

initial seed | dummy add stirring operation” (prior to i
H = 256 bits HEO
/_/H

output production with RAND_bytes)

102 es state bytes I
¥ M—<~ — ~ —
)T output production H = 160 bits

] [ = =
An Analysis of OpenSSL's RNG Falko Strenzke

- cryptosource




ELO240

Jpu
wv
I
@
=
wv
I
>
2
? -
I
F
Ipm
I
)>

—>
13 ¥ ‘
| ——a | co
— / _ N— _/
RAND_add 160 bits RAND_bytes
initial seed | dummy add stirring operation” (prior to fiesf output production with RAND_bytes)
bt B e T >
/_/H
102 es state bytes I
4

L= ~
’T : H = 160 bits

output production

[m] [l = =

Falko Strenzke -crYPtOSOUICE

An Analysis of OpenSSL's RNG




ELO240

80 bits output
to attacker

]o ] I

fpu
%)
I
@
=
wv
I
>
=
n
T
>
=
— ~—~
Joeg

1
| e " ——"
— VAR _/
' / '
RAND_add 160 bits RAND_bytes

initial seed | dummy add stirring operation” (prior to i
H = 256 bits HEO
/_/H

output production with RAND_bytes)

102 es state bytes I
¥ M—<~ — ~ —
)T output production H = 160 bits

] [ = =
An Analysis of OpenSSL's RNG Falko Strenzke

- cryptosource



ELO240

80 bits output
to attacker
by ||

by |

- _I
h{ B {
EL: SHA1 SHAL| @—> SHA1 2 SHA1
—s ¢ A U]
I 0 I I st / I 53 I I s
— VAR _/
RAND_add 160 bits RAND_bytes
initial seed

dummy add stirring operation”
H = 256 bits HEO
P S

(prior to fistoutput production with RAND_bytes)
102 es state bytes I
4 ;v == ~ —
T output production H = 160 bits

[}
An Analysis of OpenSSL's RNG

=

Falko Strenzke

- cryptosource



e B

80 bits output
to attacker

0
gpu

|
VT / ~

AND_add . . AND byt
- 160 bits 80 bits R yres
initial seed | dummy add stirring operation” (prior to fiesf output production with RAND bytes)
H = 956 bits iy £ BB AR R A IR Lt A >
—A
102 es state bytes I

4 v = ~/ —

)T output production H = 160 bits

o =] = =

Falko Strenzke -Cryptosource

An Analysis of OpenSSL's RNG



ELO240 B

80 bits output
to attacker

0
fput

— VAR / Ki/
RAND_add 160 bits 80 bits RAND_bytes 160 bits

initial seed | dummy add  stirring operation” (prior to i .
B e T

H = 256 bits
—

102 es state bytes

" —
T output production H = 160 bits

[m] [l = =

Falko Strenzke -Cryptosource

An Analysis of OpenSSL's RNG



ELO240 - .

240 bits
of entropy

80 bits output
to attacker

0
fput

— VAR / Ki/
RAND_add 160 bits 80 bits RAND_bytes 160 bits

“stirring operation” (prior to fi

initial seed | dummy add 27070S PRSI RO S ORI PO O N SR >
H = 256 bits HEO
/_/H
/ 102 es state bytes I
i TV ~— -
H = 160 bits

output production

[m] [l = =

Falko Strenzke -crYPt°S°UICE

An Analysis of OpenSSL's RNG



Life cycle

UNSEEDED

RAND_pseudo_bytes

RAND-bytes-

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

15 / 34



Life cycle

UNSEEDED

RAND_pseudo_bytes

RAND-bytes-
RAND_add, seed
entropy = 256 bits

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

15 / 34



Life cycle

UNSEEDED

RAND_pseudo_bytes

RAND-bytes-
RAND_add, seed
entropy = 256 bits

SEEDED

stirring on first call
to RAND_bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

15 / 34



Life cycle

UNSEEDED

RAND_pseudo_bytes

RAND-bytes-
RAND_add, seed
entropy = 256 bits

SEEDED

stirring on first call
to RAND_bytes

compromise

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

15 / 34



Life cycle

UNSEEDED

RAND_pseudo_bytes
RAND-bytes-

RAND_add, seed

entropy = 256 bits

SEEDED

stirring on first call
to RAND_bytes

compromise

FALSELY SEEDED

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

15 / 34



Life cycle

UNSEEDED RAND_pseudo_bytes
RAND-bytes-
RAND_add, seed
entropy = 256 bits
RAND_add, seed
with low entropy

SEEDED

stirring on first call
to RAND_bytes

compromise

FALSELY SEEDED

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

15 / 34



Life cycle

UNSEEDED RAND_pseudo_bytes
RAND-bytes-
RAND_add, seed
entropy = 256 bits
RAND_add, seed
with low entropy

SEEDED

stirring on first call
to RAND_bytes

compromise

FALSELY

SEEDED

RAND_add, seed
entropy = 256 bits

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

15 / 34



Life cycle

UNSEEDED RAND_pseudo_bytes
RAND-bytes-
RAND_add, seed
entropy = 256 bits
RAND_add, seed
with low entropy

SEEDED

stirring on first call
to RAND_bytes

compromise

FALSELY

SEEDED

RAND_add, seed
entropy = 256 bits

RESEEDED

stirring never done
An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

15 / 34



Life cycle

UNSEEDED RAND_pseudo_bytes
RAND-bytes-
RAND_add, seed
entropy = 256 bits
RAND_add, seed
with low entropy

SEEDED

stirring on first call
to RAND_bytes

compromise

FALSELY

SEEDED

should not

RAND_add, seed
exist

entropy = 256 bits

RESEEDED

stirring never done
An Analysis of OpenSSL's RNG

Falko Strenzke

[m]

=

- cryptosource

DA

15 / 34



application

seed

OS RNG
entropy source

entropy source

entropy source
An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

16 / 34



application

/

entropy source

entropy source

entropy source
An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

16 / 34



application

/

entropy source

entropy source

entropy source
An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

16 / 34



ELO160 / ELO8O in State RESEEDED S

RAND_add

RAND_bytes

1023 bytes state bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource




ELO160 / ELO8O in State RESEEDED S

RAND_add

initial seed
H

_/
RAND_bytes
= 0 bits

1023 bytes state bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource




ELO160 / ELO8O in State RESEEDED S

RAND_add

RAND_bytes
initial seed | dummy add
H = 0 bits H=0

A

1023 bytes state bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource




ELO160 / ELO8O in State RESEEDED S
| b

_______ JII | I

y || {
£ SHAL SHA1| @~ & |>-|sHA ’—» £
—9 —¢ / T 1 T {
- |
I © | | B | = [« | -
— N\ _/
VT '
RAND_add
initial seed | dummy add
H = 0 bits H=0

RAND_bytes

A

“stirring operation” (prior to first output production with RAND bytes)

1023 bytes state bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

17 / 34



ELO160 / ELO8O in State RESEEDED S
| b

_______ Jllb | I

a
=

0
P

T

initial seed
H

dummy add
= 0 bits =

1023 bytes state bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

17 / 34



ELO160 / ELO8O in State RESEEDED S
| ]o L« ] [

a
=

0
i

T

| [ =
—
RAND_add

initial seed
H

v
dummy add
= 0 bits H=

RAND_bytes

A

“stirring operation” (prior to first output production with RAND bytes)
1023 bytes state bytes

FALSELY SEEDED

An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource

17 / 34



ELO160 / ELO8O in State RESEEDED S
| ]o L« ] [

0
i

. | |
x g B
SHAL|@>| & SHA1 ’—» SHA1 2
| |
I © | | B | = [« | -
— N\ _/
VT '
RAND_add RAND_bytes
initial seed | dummy add “stirring operation” (prior to first output production with RAND bytes)
e Y B e L R
A
1023 bytes state bytes I
V —
H = 0 bits
FALSELY SEEDED
An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource

17 / 34



ELO160 / ELO8O in State RESEEDED S

0
P

_/
RAND_add RAND_bytes
initial seed | dummy ad “stirring operation” (prior to first output production with RAND bytes)
R e I B e L R
I 1023 bytes state bytes I
7 -
................. \// v
high entropy H = 0 bits
seeding
FALSELY SEEDED

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

17 / 34



ELO160 / ELO8O in State RESEEDED S

0
i

_/

RAND_add RAND_bytes

initial seed | dummy ad “stirring operation” (prior to first output production with RAND bytes)

Rl e I B e L R

I 1023 bytes state bytes
-
high entropy H = 0 bits
seeding
RESEEDED
FALSELY SEEDED

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource




ELO160 / ELO8O in State RESEEDED S

0
i

_/
RAND_add RAND_bytes
initial seed | dummy ad “stirring operation” (prior to first gfut production with RAND bytes)
ed pdummy adfl L AT >
H = 0 bits H=
I 1023 bytes s/tatﬁaytes
7 Z -
high entropy | output production H = 0 bits
seeding
RESEEDED
FALSELY SEEDED
An Analysis of OpenSSL's RNG

=]
Falko Strenzke

=

- cryptosource

17 / 34



ELO160 / ELO8O in State RESEEDED S

0
i

RAND_add RAND bytes  H = 0 bits

“stirring operation” (prior to first gfut production with RAND bytes)

I 1023 bytes s/ta«tﬁaytes
7

7
high entropy | output production H = 0 bits
seeding

RESEEDED

initial seed | dummy ad
H = 0 bits H=0

FALSELY SEEDED o = = =

An Analysis of OpenSSL's RNG Falko Strenzke -Crwtosource




ELO160 / ELO8O in State RESEEDED S
E——

Opur
<-|-E|

7

© | | :
— _/
' /
RAND_add : RAND_byt H = 0 bits
@ 160 bits vees
initial seed | dummy ad “stirring operation” (prior to first gfut production with RAND bytes)
e Y FOF e e S >
I 1023 bytes s/tatﬁaytes
7
T N e v ~
high entropy | output production H = 0 bits
seeding
RESEEDED
FALSELY SEEDED
An Analysis of OpenSSL's RNG

o F
Falko Strenzke

- cryptosource




ELO160 / ELO8O in State RESEEDED S

80 bits output
to attacker

| b |
55 SHA1
¥
|
— _/
VT /
RAND_add RAND bytes  H = 0 bits

160 bits

“stirring operation” (prior to first gfut production with RAND bytes)

I 1023 bytes Wytes
7

7
high entropy | output production H = 0 bits
seeding

RESEEDED

initial seed | dummy ad
H = 0 bits H=0

FALSELY SEEDED o [ = =

An Analysis of OpenSSL's RNG Falko Strenzke -Crwtosource




ELO160 / ELO8O in State RESEEDED S

80 bits output
to attacker

Opur
wv
I
@
=
wv
I
>
2
> wv
I
>
Z
T
pux
> wv
I
>
2
P——
p

RAND_add RAND bytes  H = 0 bits

160 bits

“stirring operation” (prior to first gfut production with RAND bytes)
>

initial seed | dummy ad
H = 0 bits H=0

1023 bytes stpe€ bytes |
L -
high entropy | output production H = 0 bits
seeding
RESEEDED
FALSELY SEEDED =} = = =

An Analysis of OpenSSL's RNG Falko Strenzke -Crwtosource



ELO160 / ELO8O in State RESEEDED S

80 bits output
to attacker

0
i

/ H = 0 bits
RAND_add 160 bits 80 bits RAND_bytes

“stirring operation” (prior to first gfut production with RAND bytes)
>

initial seed | dummy ad
H = 0 bits H=0

1023 bytes stpe€ bytes |
Z 7
................. ' '
high entropy | output production H = 0 bits
seeding
RESEEDED
FALSELY SEEDED =} 5 = E

An Analysis of OpenSSL's RNG Falko Strenzke -Crwtosource



ELO160 / ELO8O in State RESEEDED S

80 bits output 80 bits
to attacker of entropy

0
i

/ H = 0 bits
RAND_add 160 bits 80 bits RAND_bytes

“stirring operation” (prior to first gfut production with RAND bytes)
>

initial seed | dummy ad
H = 0 bits H=0

1023 bytes stpe€ bytes |
Z 7
................. ' '
high entropy | output production H = 0 bits
seeding
RESEEDED
FALSELY SEEDED =} 5 = E

An Analysis of OpenSSL's RNG Falko Strenzke -Crwtosource



Attacks so far

o ELO-240: purely cosmetic

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

18 / 34



Attacks so far

o ELO-240: purely cosmetic
o ELO-160: not exploitable

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

18 / 34



Attacks so far

o ELO-240: purely cosmetic
o ELO-160: not exploitable

o ELO-80: only predict output from same call to RAND bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

18 / 34



o ELO-240: purely cosmetic

o ELO-160: not exploitable

o ELO-80: only predict output from same call to RAND bytes
o can we do better? ~ 28 and more realistic conditions?

[m] [l = =

Da
An Analysis of OpenSSL's RNG Falko Strenzke -w 18 / 34




State Recovery Attacks

An Analysis of OpenSSL's RNG

Falko Strenzke

[m]

=

- cryptosource

DA

19 / 34




o RNG in low entropy state

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

20 / 34



o RNG in low entropy state
o high entropy reseeding

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

20 / 34



o RNG in low entropy state

o high entropy reseeding
o in RESEEDED state

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

20 / 34



RNG in low entropy state
high entropy reseeding
in RESEEDED state

© © o0 o

goal: recover RNG state after reseeding

] [ =

Da
An Analysis of OpenSSL's RNG Falko Strenzke -w 20 / 34




o RNG in low entropy state

©

high entropy reseeding
in RESEEDED state

©

©

goal: recover RNG state after reseeding

reseed RAND bytes
320 DItS  «veeenenrananeirine i e >
................... >
RAND_bytes
attacker
= = = = £ DAl

An Analysis of OpenSSL's RNG Falko Strenzke -w 20 / 34



State Recovery Attack: DE_

Y
80 bits

reseed
320 bits

RAND_bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

21/ 34



State Recovery Attack: DE_

i

4

unknown

S5

V—/
80 bits

reseed
320 bits

RAND_bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

21/ 34



State Recovery Attack: DE_

Y~
80 bits
reseed
320 bits

RAND_bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

21/ 34



guess other half —

280 possibilities

= J[ = ]
@
80 bits
unknown
320 bits
RAND_bytes
An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

21/ 34



guess other half —

use for
280 possibilities

= J[ = ]
@
80 bits
unknown
320 bits
RAND_bytes
An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

21/ 34



guess other half —

use for
280 possibilities

completely

matching

unknown

320 bits

RAND_bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

21/ 34



guess other half —

use for
280 possibilities

completely

matching

unknown

80 bits
iterate through

250 guesses
reseed
320 bits

RAND_bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

21/ 34



guess other half —

use for
280 possibilities

completely use for matching,
C one collision
matching known on average

unknown

Ll

= |
; 80 bits
iterate through

250 guesses
reseed
320 bits

RAND_bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

21/ 34



guess other half —

use for
280 possibilities

completely use for matching,
C one collision
matching known on average

unknown

Ll

= |
; 80 bits
iterate through

250 guesses
reseed
320 bits

RAND_bytes

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

21/ 34



o state bytes recovered

| b | | b |
_______ —
SHAL _)EHA:.é—»OE
> _>F
[ —

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

22 /34



o state bytes recovered

o now: recovery of md after the seeding

| b | | b |
_______ —
SHAL _)EHA:.é—»OE
> _>F
[ —

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

22 /34



o state bytes recovered
o now: recovery of md after the seeding
o revisit the attacked seeding:

| b | | b |
_______ —
SHAL _)EHA:.é—>o§:
> _>F
[ —

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

22 /34



o state bytes recovered
o now: recovery of md after the seeding
o revisit the attacked seeding:

known prior
to reseeding

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

22 /34



o state bytes recovered
o now: recovery of md after the seeding
o revisit the attacked seeding:

known prior
to reseeding

known from
attack
An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

22 /34



o state bytes recovered
o now: recovery of md after the seeding
o revisit the attacked seeding:

known prior
to reseeding

known from
attack
An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

22 /34



o state bytes recovered
o now: recovery of md after the seeding
o revisit the attacked seeding:

known prior
to reseeding

known from
attack
An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

22 /34



o state bytes recovered
o now: recovery of md after the seeding
o revisit the attacked seeding:

md at end of
reseeding,

known from
difference

known prior
to reseeding

known from
attack
An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

22 /34



Strategies to deal with non-zero initial entropy

o determine state prior to seeding from output

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

23 /34



Strategies to deal with non-zero initial entropy
o determine state prior to seeding from output

o determine additional entropy during the recovery of md

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

23 /34



Strategies to deal with non-zero initial entropy
o determine state prior to seeding from output

o determine additional entropy during the recovery of md
o computational effort 280+

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

23 /34



o state after reseeding completely recovered

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

24 / 34



o state after reseeding completely recovered

o condition: attacker receives longer portion of output at
specific offset after reseeding

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

24 / 34



o state after reseeding completely recovered

o condition: attacker receives longer portion of output at
specific offset after reseeding

o effort for a 320-bit seed: 284 hash evaluations

] [ =

DA
An Analysis of OpenSSL's RNG Falko Strenzke -w 24 / 34




©

state after reseeding completely recovered

©

condition: attacker receives longer portion of output at
specific offset after reseeding

effort for a 320-bit seed: 28* hash evaluations

©

o

(some tens of bytes in each hash invocation)

] [ =

DA
An Analysis of OpenSSL's RNG Falko Strenzke -w 24 / 34




o state after reseeding completely recovered

o condition: attacker receives longer portion of output at
specific offset after reseeding

o effort for a 320-bit seed: 28* hash evaluations
o (some tens of bytes in each hash invocation)

o also possible for seed not a multiple of 80 bits

[m] [l = =

DA
An Analysis of OpenSSL's RNG Falko Strenzke -w 24 / 34




o state after reseeding completely recovered

o condition: attacker receives longer portion of output at
specific offset after reseeding

o effort for a 320-bit seed: 28* hash evaluations
o (some tens of bytes in each hash invocation)

o also possible for seed not a multiple of 80 bits
o 280 considered “light-weight security”

[m] [l = =

DA

An Analysis of OpenSSL's RNG Falko Strenzke -w 24 / 34




o state after reseeding completely recovered

o condition: attacker receives longer portion of output at
specific offset after reseeding

o effort for a 320-bit seed: 28* hash evaluations
o (some tens of bytes in each hash invocation)

o also possible for seed not a multiple of 80 bits
o 280 considered “light-weight security”
o =~ RSA-1024

[m] [l = =

DA

An Analysis of OpenSSL's RNG Falko Strenzke -w 24 / 34




State Recovery Attack: DE_

o state after reseeding completely recovered

o condition: attacker receives longer portion of output at
specific offset after reseeding

o effort for a 320-bit seed: 28* hash evaluations
o (some tens of bytes in each hash invocation)

o also possible for seed not a multiple of 80 bits
o 280 considered “light-weight security”

o =~ RSA-1024
o PRESENT light-weight block cipher for RFID applications

[m] [l = =

DA

An Analysis of OpenSSL's RNG Falko Strenzke -w 24 / 34




State Recovery Attack: DE_

o state after reseeding completely recovered
o condition: attacker receives longer portion of output at
specific offset after reseeding
o effort for a 320-bit seed: 28* hash evaluations
o (some tens of bytes in each hash invocation)
o also possible for seed not a multiple of 80 bits
o 280 considered “light-weight security”
o =~ RSA-1024

o PRESENT light-weight block cipher for RFID applications
o must be feared to be breakable within a decade (?)

o <& = = z 9ac

An Analysis of OpenSSL's RNG Falko Strenzke -w 24 / 34




State Recovery Attack: DEJ_

o state after reseeding completely recovered

o condition: attacker receives longer portion of output at
specific offset after reseeding

o effort for a 320-bit seed: 28* hash evaluations

o (some tens of bytes in each hash invocation)

o also possible for seed not a multiple of 80 bits

o 280 considered “light-weight security”

~ RSA-1024

PRESENT light-weight block cipher for RFID applications

must be feared to be breakable within a decade (?)
will incur considerable costs for a long time

© 0 0 o

o <& = = z 9ac

An Analysis of OpenSSL's RNG Falko Strenzke -w 24 / 34




o similar attack, recover also the seed

const/ 80 bits
known  entropy
| bo, 160 bits | | b1, 80 bits |
_______ 1___________1_ 1
) SHAI
S R

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

25 / 34



o similar attack, recover also the seed

const/

80 bits
known  entropy
| bo, 160 bits | | b1, 80 bits |
_______ l___________l_ 1
SHAL
—

o synching to md like in DEJA-STATE

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

25 / 34



o similar attack, recover also the seed

const/

80 bits
known  entropy
| bo, 160 bits | | b1, 80 bits |
_______ l___________l_ 1
SHAL
—

o synching to md like in DEJA-STATE
o then iterate through the possible seed values
An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource




Forward Security of Seed Data

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

26 / 34




o forward security of seed data not a recognized notion

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

27 / 34



o forward security of seed data not a recognized notion

o OpenSSL’s RNG: even high entropy seed data potentially
recoverable

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

27 / 34



o forward security of seed data not a recognized notion

o OpenSSL’s RNG: even high entropy seed data potentially
recoverable

o block-wise hashing in RAND_add is a mistake

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

27 / 34



o forward security of seed data not a recognized notion
recoverable

o OpenSSL’s RNG: even high entropy seed data potentially

o block-wise hashing in RAND_add is a mistake

o correct: hashing state together with new input

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

27 / 34



o forward security of seed data not a recognized notion

o OpenSSL’s RNG: even high entropy seed data potentially
recoverable

o block-wise hashing in RAND_add is a mistake
o correct: hashing state together with new input

o always inefficient for large RNG states

[m] [l = =

DA

An Analysis of OpenSSL's RNG Falko Strenzke -w 27 / 34




Theoretical Considerations

An Analysis of OpenSSL's RNG

Falko Strenzke

[m]

=

- cryptosource

DA

28 / 34




H(f(1,S)) > H(S) and H(f(/,S) > H(I)
o input /, state S

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

29 /34



H(f(1,S)) > H(S) and H(f(/,S) > H(I)
o input /, state S

o RAND_add fulfills this notion formally

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

29 /34



H(f(1,S)) > H(S) and H(f(/,S) > H(I)
o input /, state S

o RAND_add fulfills this notion formally
o but not effectively

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

29 /34



H(f(1,5)) > H(S) and H(f(I,S) > H(/)

o input /, state S
o RAND_add fulfills this notion formally
o but not effectively

o only useful if whole state is used in output production in a
symmetric way

[m] [l = =

DA

An Analysis of OpenSSL's RNG Falko Strenzke -w 29 / 34




H(f(1,5)) > H(S) and H(f(I,S) > H(/)

o input /, state S
o RAND_add fulfills this notion formally
o but not effectively

o only useful if whole state is used in output production in a
symmetric way

o need definition which considers entropy of subsequent
output instead of that of the state

[m] [l = =

An Analysis of OpenSSL's RNG Falko Strenzke -w 29 / 34

DA




o impaired forward security

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

30 /34



o impaired forward security

reseeding |

| output

recover

DEJA-SEED, DEJA-STATE,

or state compromise

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

30 /34



o impaired forward security

| reseeding |

| output |

recover

DEJA-SEED, DEJA-STATE,

or state compromise

o backward security not attempted by RNG itself

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

30 /34



o impaired forward security

| reseeding |

| output |

recover

DEJA-SEED, DEJA-STATE,

or state compromise

o backward security not attempted by RNG itself

o but when attempted by application, suffers from our attacks

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

30 /34



o impaired forward security

| reseeding |

I output I

recover

DEJA-SEED, DEJA-STATE,

or state compromise

o backward security not attempted by RNG itself

o but when attempted by application, suffers from our attacks

state compromisel | reseeding |

| output |<—|re°°ve' DEJA-SEED, DEJA-STATE

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource




o impaired forward security

| reseeding |

I output I

recover

DEJA-SEED, DEJA-STATE,

or state compromise

o backward security not attempted by RNG itself

o but when attempted by application, suffers from our attacks

Istate compromisel | reseeding |

| output |<—|re°°ve' DEJA-SEED, DEJA-STATE

o new notion: forward security of seed data

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource




o impaired forward security

| reseeding |

I output I

recover

DEJA-SEED, DEJA-STATE,

or state compromise

o backward security not attempted by RNG itself

o but when attempted by application, suffers from our attacks

Istate compromisel | reseeding |

| output |<—|re°°ve' DEJA-SEED, DEJA-STATE
o new notion: forward security of seed data
o not achieved by OpenSSL's RNG

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource




Repairing OpenSSL’s RNG

An Analysis of OpenSSL's RNG

Falko Strenzke

[m]

=

- cryptosource

DA

31 /34




o RAND_pseudo_bytes must use different state (LESLI)

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

32 /34



o RAND_pseudo_bytes must use different state (LESLI)
o use cipher-based generator

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

32 /34



o RAND_pseudo_bytes must use different state (LESLI)
o use cipher-based generator

o approved and efficients designs exist

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

32 /34



Repairing the RNG

o RAND_pseudo_bytes must use different state (LESLI)
o use cipher-based generator
o approved and efficients designs exist

o e.g. AES / counter mode generators

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

32 /34



Repairing the RNG

o RAND_pseudo_bytes must use different state (LESLI)
o use cipher-based generator
o approved and efficients designs exist

o e.g. AES / counter mode generators

o as realized in the FIPS version of the library!

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

32 /34



Repairing the RNG

o RAND_pseudo_bytes must use different state (LESLI)
o use cipher-based generator
o approved and efficients designs exist

o e.g. AES / counter mode generators

o as realized in the FIPS version of the library!

o more efficient than hash-based, due to hardware support

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

32 /34



Repairing the RNG

o RAND_pseudo_bytes must use different state (LESLI)
o use cipher-based generator
o approved and efficients designs exist
o e.g. AES / counter mode generators
o as realized in the FIPS version of the library!

o more efficient than hash-based, due to hardware support
o ad-hoc repair

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

32 /34



Repairing the RNG

o RAND_pseudo_bytes must use different state (LESLI)
o use cipher-based generator
o approved and efficients designs exist
o e.g. AES / counter mode generators
o as realized in the FIPS version of the library!

o more efficient than hash-based, due to hardware support
o ad-hoc repair

o increase the “entropy flow" beyond 160 bits

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

32 /34



Repairing the RNG

o RAND_pseudo_bytes must use different state (LESLI)
o use cipher-based generator
o approved and efficients designs exist
o e.g. AES / counter mode generators
o as realized in the FIPS version of the library!

o more efficient than hash-based, due to hardware support
o ad-hoc repair

o increase the “entropy flow" beyond 160 bits
o remove the leakage of half of md

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

32 /34



Repairing the RNG

o RAND_pseudo_bytes must use different state (LESLI)
o use cipher-based generator
o approved and efficients designs exist
o e.g. AES / counter mode generators
o as realized in the FIPS version of the library!

o more efficient than hash-based, due to hardware support
o ad-hoc repair

o increase the “entropy flow" beyond 160 bits
o remove the leakage of half of md

o forward security of seed-data cannot be efficiently addressed

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

32 /34



Repairing the RNG

o RAND_pseudo_bytes must use different state (LESLI)
o use cipher-based generator
o approved and efficients designs exist
o e.g. AES / counter mode generators
o as realized in the FIPS version of the library!

o more efficient than hash-based, due to hardware support
o ad-hoc repair

o increase the “entropy flow" beyond 160 bits
o remove the leakage of half of md

o forward security of seed-data cannot be efficiently addressed
o so far no repair in OpenSSL

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

32 /34



Repairing the RNG

o RAND_pseudo_bytes must use different state (LESLI)
o use cipher-based generator
o approved and efficients designs exist
o e.g. AES / counter mode generators
o as realized in the FIPS version of the library!

o more efficient than hash-based, due to hardware support
o ad-hoc repair

o increase the “entropy flow" beyond 160 bits
o remove the leakage of half of md

o forward security of seed-data cannot be efficiently addressed
o so far no repair in OpenSSL

o secure wrapper functions (— paper)

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

32 /34



Repairing the RNG

o RAND_pseudo_bytes must use different state (LESLI)
o use cipher-based generator
o approved and efficients designs exist

o e.g. AES / counter mode generators

o as realized in the FIPS version of the library!
o ad-hoc repair

o more efficient than hash-based, due to hardware support

o increase the “entropy flow" beyond 160 bits
o remove the leakage of half of md

o forward security of seed-data cannot be efficiently addressed
o so far no repair in OpenSSL
o secure wrapper functions (— paper)

o Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource




Conclusion

o multiple design errors in OpenSSL's RNG

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

33 /34



Conclusion

o multiple design errors in OpenSSL's RNG
o LESLI

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

33 /34



Conclusion

o multiple design errors in OpenSSL's RNG
o LESLI

o ELO240,ELO160,ELO80

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

33 /34



Conclusion

o multiple design errors in OpenSSL's RNG
o LESLI

o ELO240,ELO160,ELO80
o DEJA-STATE, DEJA-SEED

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

33 /34



Conclusion

o multiple design errors in OpenSSL's RNG
o LESLI

o ELO240,ELO160,ELO80
o DEJA-STATE, DEJA-SEED

o effort around 2% hash evaluations

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

33 /34



Conclusion

o multiple design errors in OpenSSL's RNG
o LESLI
o ELO240,ELO160,ELO80

o DEJA-STATE, DEJA-SEED

o effort around 2% hash evaluations
o impact

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

33 /34



Conclusion

o multiple design errors in OpenSSL's RNG
o LESLI
o ELO240,ELO160,ELO80

o DEJA-STATE, DEJA-SEED

o effort around 2% hash evaluations
o impact

o attacks highly application specific

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

33 /34



Conclusion

o multiple design errors in OpenSSL's RNG
o LESLI
o ELO240,ELO160,ELO80

o DEJA-STATE, DEJA-SEED

o effort around 2% hash evaluations
o impact

o attacks highly application specific
o relevant for embedded systems

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

33 /34



Conclusion

o multiple design errors in OpenSSL's RNG
o LESLI

o ELO240,ELO160,ELO80
o DEJA-STATE, DEJA-SEED

o effort around 2% hash evaluations
o impact

o attacks highly application specific

o relevant for embedded systems
o theoretic insights

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

33 /34



Conclusion

o multiple design errors in OpenSSL's RNG
o LESLI
o ELO240,ELO160,ELO80

o DEJA-STATE, DEJA-SEED

o effort around 2% hash evaluations
o impact

o attacks highly application specific

o relevant for embedded systems
o theoretic insights

o applicability of the notion of mixing function

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

33 /34



Conclusion

o multiple design errors in OpenSSL's RNG
o LESLI

o ELO240,ELO160,ELO80
o DEJA-STATE, DEJA-SEED

o effort around 2% hash evaluations
o impact

o attacks highly application specific

o relevant for embedded systems
o theoretic insights

o applicability of the notion of mixing function
o forward security of seed data

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

33 /34



Conclusion

o multiple design errors in OpenSSL's RNG
o LESLI

o ELO240,ELO160,ELO80
o DEJA-STATE, DEJA-SEED

o effort around 2% hash evaluations
o impact

o attacks highly application specific

o relevant for embedded systems
o theoretic insights

o applicability of the notion of mixing function
o forward security of seed data

o repairs suggested

An Analysis of OpenSSL's RNG

[}
Falko Strenzke

=

- cryptosource

DA

33 /34



Thank you!

An Analysis of OpenSSL's RNG

Falko Strenzke

[m]

=

-cry'ptosource

DA

34 /34




	Low Entropy Secret Leakage
	Core Cryptographic Function of OpenSSL's RNG
	Output Entropy Limitation Vulnerabilities
	State Recovery Attacks
	Forward Security of Seed Data
	Theoretical Considerations
	Repairing OpenSSL's RNG

