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o ELO-240: purely cosmetic

o ELO-160: not exploitable

o ELO-80: only predict output from same call to RAND bytes
o can we do better? ~ 28 and more realistic conditions?
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o state bytes recovered
o now: recovery of md after the seeding
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Strategies to deal with non-zero initial entropy
o determine state prior to seeding from output
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State Recovery Attack: DEJ_

o state after reseeding completely recovered

o condition: attacker receives longer portion of output at
specific offset after reseeding

o effort for a 320-bit seed: 28* hash evaluations

o (some tens of bytes in each hash invocation)

o also possible for seed not a multiple of 80 bits

o 280 considered “light-weight security”

~ RSA-1024

PRESENT light-weight block cipher for RFID applications

must be feared to be breakable within a decade (?)
will incur considerable costs for a long time

© 0 0 o

o <& = = z 9ac
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o similar attack, recover also the seed

const/

80 bits
known  entropy
| bo, 160 bits | | b1, 80 bits |
_______ l___________l_ 1
SHAL
—

o synching to md like in DEJA-STATE
o then iterate through the possible seed values
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o forward security of seed data not a recognized notion

o OpenSSL’s RNG: even high entropy seed data potentially
recoverable

o block-wise hashing in RAND_add is a mistake
o correct: hashing state together with new input

o always inefficient for large RNG states
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H(f(1,5)) > H(S) and H(f(I,S) > H(/)

o input /, state S
o RAND_add fulfills this notion formally
o but not effectively

o only useful if whole state is used in output production in a
symmetric way
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H(f(1,5)) > H(S) and H(f(I,S) > H(/)

o input /, state S
o RAND_add fulfills this notion formally
o but not effectively

o only useful if whole state is used in output production in a
symmetric way

o need definition which considers entropy of subsequent
output instead of that of the state
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or state compromise

o backward security not attempted by RNG itself

o but when attempted by application, suffers from our attacks

Istate compromisel | reseeding |

| output |<—|re°°ve' DEJA-SEED, DEJA-STATE
o new notion: forward security of seed data
o not achieved by OpenSSL's RNG
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o use cipher-based generator
o approved and efficients designs exist
o e.g. AES / counter mode generators
o as realized in the FIPS version of the library!

o more efficient than hash-based, due to hardware support
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Repairing the RNG

o RAND_pseudo_bytes must use different state (LESLI)
o use cipher-based generator
o approved and efficients designs exist

o e.g. AES / counter mode generators

o as realized in the FIPS version of the library!
o ad-hoc repair

o more efficient than hash-based, due to hardware support

o increase the “entropy flow" beyond 160 bits
o remove the leakage of half of md

o forward security of seed-data cannot be efficiently addressed
o so far no repair in OpenSSL
o secure wrapper functions (— paper)

o Note: the forks LibreSSL and BoringSSL are even worse
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o DEJA-STATE, DEJA-SEED

o effort around 2% hash evaluations
o impact

o attacks highly application specific

o relevant for embedded systems
o theoretic insights

o applicability of the notion of mixing function
o forward security of seed data

o repairs suggested
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Thank you!
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