
An Analysis of OpenSSL’s Random Number
Generator

Eurocrypt 2016

Falko Strenzke

cryptosource GmbH,
Darmstadt

fstrenzke@cryptosource.de

c©Falko Strenzke, cryptosource GmbH 2016

September 14, 2016

An Analysis of OpenSSL’s RNG Falko Strenzke 1 / 34

fstrenzke@cryptosource.de


Pseudo Random Number Generation

Software-based RNG’s use pseudo random number generators
(PRNGs)

but are not PRNGs

RNG state

seed

output

RAND add (buffer, estimated entopy)

RAND bytes (buffer),
RAND pseudo bytes (buffer)

An Analysis of OpenSSL’s RNG Falko Strenzke 2 / 34



Pseudo Random Number Generation

Software-based RNG’s use pseudo random number generators
(PRNGs)

but are not PRNGs

RNG state

seed

output

RAND add (buffer, estimated entopy)

RAND bytes (buffer),
RAND pseudo bytes (buffer)

An Analysis of OpenSSL’s RNG Falko Strenzke 2 / 34



Pseudo Random Number Generation

Software-based RNG’s use pseudo random number generators
(PRNGs)

but are not PRNGs

RNG state

seed

output

RAND add (buffer, estimated entopy)

RAND bytes (buffer),
RAND pseudo bytes (buffer)

An Analysis of OpenSSL’s RNG Falko Strenzke 2 / 34



Pseudo Random Number Generation

Software-based RNG’s use pseudo random number generators
(PRNGs)

but are not PRNGs

RNG state

seed

output

RAND add (buffer, estimated entopy)

RAND bytes (buffer),
RAND pseudo bytes (buffer)

An Analysis of OpenSSL’s RNG Falko Strenzke 2 / 34



Pseudo Random Number Generation

Software-based RNG’s use pseudo random number generators
(PRNGs)

but are not PRNGs

RNG state

seed

output

RAND add (buffer, estimated entopy)

RAND bytes (buffer),
RAND pseudo bytes (buffer)

An Analysis of OpenSSL’s RNG Falko Strenzke 2 / 34



Random Number Generation in Cryptographic Libraries

OS RNG

entropy sourceentropy source entropy source

OpenSSL RNG

seed

application

random numbers

t

seed
(file)

An Analysis of OpenSSL’s RNG Falko Strenzke 3 / 34



Security Notions for RNGs

forward security
t

output state compromise
recover

backward security
t

outputstate compromise
recover

don’t leak any information about state in output

An Analysis of OpenSSL’s RNG Falko Strenzke 4 / 34



Security Notions for RNGs

forward security
t

output state compromise
recover

backward security
t

outputstate compromise
recover

don’t leak any information about state in output

An Analysis of OpenSSL’s RNG Falko Strenzke 4 / 34



Security Notions for RNGs

forward security
t

output state compromise
recover

backward security
t

outputstate compromise
recover

don’t leak any information about state in output

An Analysis of OpenSSL’s RNG Falko Strenzke 4 / 34



Low Entropy Secret Leakage

An Analysis of OpenSSL’s RNG Falko Strenzke 5 / 34



Seeding by the Application

OpenSSL RNG

application

RAND add()
RAND bytes()

RAND pseudo bytes()

RAND bytes()

RAND pseudo bytes()

t

H < 256 bit H ≥ 256 bit

An Analysis of OpenSSL’s RNG Falko Strenzke 6 / 34



Seeding by the Application

OpenSSL RNG

application

RAND add()
RAND bytes()

RAND pseudo bytes()

RAND bytes()

RAND pseudo bytes()

t

H < 256 bit H ≥ 256 bit

An Analysis of OpenSSL’s RNG Falko Strenzke 6 / 34



Seeding by the Application

OpenSSL RNG

application

RAND add()
RAND bytes()

RAND pseudo bytes()

RAND bytes()

RAND pseudo bytes()

t

H < 256 bit H ≥ 256 bit

An Analysis of OpenSSL’s RNG Falko Strenzke 6 / 34



Seeding by the Application

OpenSSL RNG

application

RAND add()
RAND bytes()

RAND pseudo bytes()

RAND bytes()

RAND pseudo bytes()

t

H < 256 bit H ≥ 256 bit

An Analysis of OpenSSL’s RNG Falko Strenzke 6 / 34



Seeding by the Application

OpenSSL RNG

application

RAND add()
RAND bytes()

RAND pseudo bytes()

RAND bytes()

RAND pseudo bytes()

t

H < 256 bit H ≥ 256 bit

An Analysis of OpenSSL’s RNG Falko Strenzke 6 / 34



Outputting Random Numbers in Low Entropy States

OpenSSL RNG

H = 10 bits H = 25 bits

application

attacker

secret seed
H = 15 bits

brute force 225 guesses
recover secret seed

RAND pseudo bytes()

RNG output, nonce

t

An Analysis of OpenSSL’s RNG Falko Strenzke 7 / 34



Outputting Random Numbers in Low Entropy States

OpenSSL RNG

H = 10 bits H = 25 bits

application

attacker

secret seed
H = 15 bits

brute force 225 guesses
recover secret seed

RAND pseudo bytes()

RNG output, nonce

t

An Analysis of OpenSSL’s RNG Falko Strenzke 7 / 34



Outputting Random Numbers in Low Entropy States

OpenSSL RNG

H = 10 bits H = 25 bits

application

attacker

secret seed
H = 15 bits

brute force 225 guesses
recover secret seed

RAND pseudo bytes()

RNG output, nonce

t

An Analysis of OpenSSL’s RNG Falko Strenzke 7 / 34



Outputting Random Numbers in Low Entropy States

OpenSSL RNG

H = 10 bits H = 25 bits

application

attacker

secret seed
H = 15 bits

brute force 225 guesses
recover secret seed

RAND pseudo bytes()

RNG output, nonce

t

An Analysis of OpenSSL’s RNG Falko Strenzke 7 / 34



Outputting Random Numbers in Low Entropy States

OpenSSL RNG

H = 10 bits H = 25 bits

application

attacker

secret seed
H = 15 bits

brute force 225 guesses
recover secret seed

RAND pseudo bytes()

RNG output, nonce

t

An Analysis of OpenSSL’s RNG Falko Strenzke 7 / 34



Outputting Random Numbers in Low Entropy States

OpenSSL RNG

H = 10 bits H = 25 bits

application

attacker

secret seed
H = 15 bits

brute force 225 guesses
recover secret seed

RAND pseudo bytes()

RNG output, nonce

t

An Analysis of OpenSSL’s RNG Falko Strenzke 7 / 34



Outputting Random Numbers in Low Entropy States

OpenSSL RNG

H = 10 bits H = 25 bits

application

attacker

secret seed
H = 15 bits

brute force 225 guesses
recover secret seed

RAND pseudo bytes()

RNG output, nonce

t

An Analysis of OpenSSL’s RNG Falko Strenzke 7 / 34



Potentially Leaked Secrets

RAND pseudo bytes generates output in the same way as
RAND bytes

API documentation suggests to feed low-entropy secrets such
passwords

OpenSSL feeds the previous contents of buffers to be
randomized to RNG state (Debian issue in 2008)

previous contents could contain low entropy secrets by
themselves

overwriting secrets with random numbers is an established
practice

overwritten low entropy secrets may be leaked in output

An Analysis of OpenSSL’s RNG Falko Strenzke 8 / 34



Potentially Leaked Secrets

RAND pseudo bytes generates output in the same way as
RAND bytes

API documentation suggests to feed low-entropy secrets such
passwords

OpenSSL feeds the previous contents of buffers to be
randomized to RNG state (Debian issue in 2008)

previous contents could contain low entropy secrets by
themselves

overwriting secrets with random numbers is an established
practice

overwritten low entropy secrets may be leaked in output

An Analysis of OpenSSL’s RNG Falko Strenzke 8 / 34



Potentially Leaked Secrets

RAND pseudo bytes generates output in the same way as
RAND bytes

API documentation suggests to feed low-entropy secrets such
passwords

OpenSSL feeds the previous contents of buffers to be
randomized to RNG state (Debian issue in 2008)

previous contents could contain low entropy secrets by
themselves

overwriting secrets with random numbers is an established
practice

overwritten low entropy secrets may be leaked in output

An Analysis of OpenSSL’s RNG Falko Strenzke 8 / 34



Potentially Leaked Secrets

RAND pseudo bytes generates output in the same way as
RAND bytes

API documentation suggests to feed low-entropy secrets such
passwords

OpenSSL feeds the previous contents of buffers to be
randomized to RNG state (Debian issue in 2008)

previous contents could contain low entropy secrets by
themselves

overwriting secrets with random numbers is an established
practice

overwritten low entropy secrets may be leaked in output

An Analysis of OpenSSL’s RNG Falko Strenzke 8 / 34



Potentially Leaked Secrets

RAND pseudo bytes generates output in the same way as
RAND bytes

API documentation suggests to feed low-entropy secrets such
passwords

OpenSSL feeds the previous contents of buffers to be
randomized to RNG state (Debian issue in 2008)

previous contents could contain low entropy secrets by
themselves

overwriting secrets with random numbers is an established
practice

overwritten low entropy secrets may be leaked in output

An Analysis of OpenSSL’s RNG Falko Strenzke 8 / 34



Potentially Leaked Secrets

RAND pseudo bytes generates output in the same way as
RAND bytes

API documentation suggests to feed low-entropy secrets such
passwords

OpenSSL feeds the previous contents of buffers to be
randomized to RNG state (Debian issue in 2008)

previous contents could contain low entropy secrets by
themselves

overwriting secrets with random numbers is an established
practice

overwritten low entropy secrets may be leaked in output

An Analysis of OpenSSL’s RNG Falko Strenzke 8 / 34



Core Cryptographic Function of OpenSSL’s
RNG

An Analysis of OpenSSL’s RNG Falko Strenzke 9 / 34



Core Cryptographic Function of OpenSSL’s RNG

custom design

c©1998

An Analysis of OpenSSL’s RNG Falko Strenzke 10 / 34



Core Cryptographic Function of OpenSSL’s RNG

custom design

c©1998

An Analysis of OpenSSL’s RNG Falko Strenzke 10 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Core Cryptographic Function of OpenSSL’s RNG

m
d
′0

160
bits

s0 . . . s2 s3 s4 . . .

RAND bytes

b0

160 bits

b2. . . r0

80 bits

r1

SHA1 SHA1

RAND add

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

1023 state bytes

md
160
bits

RAND add, RAND bytes

ignoring: counters, PID

An Analysis of OpenSSL’s RNG Falko Strenzke 11 / 34



Output Entropy Limitation Vulnerabilities

An Analysis of OpenSSL’s RNG Falko Strenzke 12 / 34



ELO240

m
d
′′0

s0 s1

b0 b1

SHA1 SHA1

RAND add

m
d
′0

s2 s3

b2 b3

SHA1
/

160 SHA1

RAND add

m
d
0

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bits

An Analysis of OpenSSL’s RNG Falko Strenzke 13 / 34



ELO240

m
d
′′0

s0 s1

b0 b1

SHA1 SHA1

RAND add

m
d
′0

s2 s3

b2 b3

SHA1
/

160 SHA1

RAND add

m
d
0

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bits

An Analysis of OpenSSL’s RNG Falko Strenzke 13 / 34



ELO240

m
d
′′0

s0 s1

b0 b1

SHA1 SHA1

RAND add

m
d
′0

s2 s3

b2 b3

SHA1
/

160 SHA1

RAND add

m
d
0

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bits

An Analysis of OpenSSL’s RNG Falko Strenzke 13 / 34



ELO240

m
d
′′0

s0 s1

b0 b1

SHA1 SHA1

RAND add

m
d
′0

s2 s3

b2 b3

SHA1
/

160 SHA1

RAND add

m
d
0

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bits

An Analysis of OpenSSL’s RNG Falko Strenzke 13 / 34



ELO240

m
d
′′0

s0 s1

b0 b1

SHA1 SHA1

RAND add

m
d
′0

s2 s3

b2 b3

SHA1
/

160 SHA1

RAND add

m
d
0

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bits

An Analysis of OpenSSL’s RNG Falko Strenzke 13 / 34



ELO240

m
d
′′0

s0 s1

b0 b1

SHA1 SHA1

RAND add

m
d
′0

s2 s3

b2 b3

SHA1
/

160 SHA1

RAND add

m
d
0

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bits

An Analysis of OpenSSL’s RNG Falko Strenzke 13 / 34



ELO240

m
d
′′0

s0 s1

b0 b1

SHA1 SHA1

RAND add

m
d
′0

s2 s3

b2 b3

SHA1
/

160 SHA1

RAND add

m
d
0

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bits

An Analysis of OpenSSL’s RNG Falko Strenzke 13 / 34



ELO240

m
d
′′0

s0 s1

b0 b1

SHA1 SHA1

RAND add

m
d
′0

s2 s3

b2 b3

SHA1
/

160 SHA1

RAND add

m
d
0

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bits

An Analysis of OpenSSL’s RNG Falko Strenzke 13 / 34



ELO240

m
d
′′0

s0 s1

b0 b1

SHA1 SHA1

RAND add

m
d
′0

s2 s3

b2 b3

SHA1
/

160 SHA1

RAND add

m
d
0

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bits

An Analysis of OpenSSL’s RNG Falko Strenzke 13 / 34



ELO240

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add
m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bitsoutput production

160 bits

80 bits output
to attacker

80 bits 160 bits

240 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 14 / 34



ELO240

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add
m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bitsoutput production

160 bits

80 bits output
to attacker

80 bits 160 bits

240 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 14 / 34



ELO240

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add
m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bitsoutput production

160 bits

80 bits output
to attacker

80 bits 160 bits

240 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 14 / 34



ELO240

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add
m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bitsoutput production

160 bits

80 bits output
to attacker

80 bits 160 bits

240 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 14 / 34



ELO240

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add
m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bitsoutput production

160 bits

80 bits output
to attacker

80 bits 160 bits

240 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 14 / 34



ELO240

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add
m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bitsoutput production

160 bits

80 bits output
to attacker

80 bits 160 bits

240 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 14 / 34



ELO240

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add
m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bitsoutput production

160 bits

80 bits output
to attacker

80 bits 160 bits

240 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 14 / 34



ELO240

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add
m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bitsoutput production

160 bits

80 bits output
to attacker

80 bits 160 bits

240 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 14 / 34



ELO240

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add
m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 256 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

H = 160 bitsoutput production

160 bits

80 bits output
to attacker

80 bits 160 bits

240 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 14 / 34



Life cycle

unseeded

seeded

RAND add, seed
entropy = 256 bits

falsely seeded

compromise

reseeded

RAND add, seed
entropy = 256 bits

RAND add, seed
with low entropy

RAND pseudo bytes

RAND bytes

stirring on first call
to RAND bytes

stirring never doneshould not
exist

An Analysis of OpenSSL’s RNG Falko Strenzke 15 / 34



Life cycle

unseeded

seeded

RAND add, seed
entropy = 256 bits

falsely seeded

compromise

reseeded

RAND add, seed
entropy = 256 bits

RAND add, seed
with low entropy

RAND pseudo bytes

RAND bytes

stirring on first call
to RAND bytes

stirring never doneshould not
exist

An Analysis of OpenSSL’s RNG Falko Strenzke 15 / 34



Life cycle

unseeded

seeded

RAND add, seed
entropy = 256 bits

falsely seeded

compromise

reseeded

RAND add, seed
entropy = 256 bits

RAND add, seed
with low entropy

RAND pseudo bytes

RAND bytes

stirring on first call
to RAND bytes

stirring never doneshould not
exist

An Analysis of OpenSSL’s RNG Falko Strenzke 15 / 34



Life cycle

unseeded

seeded

RAND add, seed
entropy = 256 bits

falsely seeded

compromise

reseeded

RAND add, seed
entropy = 256 bits

RAND add, seed
with low entropy

RAND pseudo bytes

RAND bytes

stirring on first call
to RAND bytes

stirring never doneshould not
exist

An Analysis of OpenSSL’s RNG Falko Strenzke 15 / 34



Life cycle

unseeded

seeded

RAND add, seed
entropy = 256 bits

falsely seeded

compromise

reseeded

RAND add, seed
entropy = 256 bits

RAND add, seed
with low entropy

RAND pseudo bytes

RAND bytes

stirring on first call
to RAND bytes

stirring never doneshould not
exist

An Analysis of OpenSSL’s RNG Falko Strenzke 15 / 34



Life cycle

unseeded

seeded

RAND add, seed
entropy = 256 bits

falsely seeded

compromise

reseeded

RAND add, seed
entropy = 256 bits

RAND add, seed
with low entropy

RAND pseudo bytes

RAND bytes

stirring on first call
to RAND bytes

stirring never doneshould not
exist

An Analysis of OpenSSL’s RNG Falko Strenzke 15 / 34



Life cycle

unseeded

seeded

RAND add, seed
entropy = 256 bits

falsely seeded

compromise

reseeded

RAND add, seed
entropy = 256 bits

RAND add, seed
with low entropy

RAND pseudo bytes

RAND bytes

stirring on first call
to RAND bytes

stirring never doneshould not
exist

An Analysis of OpenSSL’s RNG Falko Strenzke 15 / 34



Life cycle

unseeded

seeded

RAND add, seed
entropy = 256 bits

falsely seeded

compromise

reseeded

RAND add, seed
entropy = 256 bits

RAND add, seed
with low entropy

RAND pseudo bytes

RAND bytes

stirring on first call
to RAND bytes

stirring never doneshould not
exist

An Analysis of OpenSSL’s RNG Falko Strenzke 15 / 34



Life cycle

unseeded

seeded

RAND add, seed
entropy = 256 bits

falsely seeded

compromise

reseeded

RAND add, seed
entropy = 256 bits

RAND add, seed
with low entropy

RAND pseudo bytes

RAND bytes

stirring on first call
to RAND bytes

stirring never doneshould not
exist

An Analysis of OpenSSL’s RNG Falko Strenzke 15 / 34



Reseeded State in Practice

OS RNG

entropy sourceentropy source entropy source

OpenSSL RNG

fa
ls
el
y
se
ed
ed

seed

application

random numbers

t

re
se
ed
edseed

(file)

An Analysis of OpenSSL’s RNG Falko Strenzke 16 / 34



Reseeded State in Practice

OS RNG

entropy sourceentropy source entropy source

OpenSSL RNG

fa
ls
el
y
se
ed
ed

seed

application

random numbers

t

re
se
ed
edseed

(file)

An Analysis of OpenSSL’s RNG Falko Strenzke 16 / 34



Reseeded State in Practice

OS RNG

entropy sourceentropy source entropy source

OpenSSL RNG

fa
ls
el
y
se
ed
ed

seed

application

random numbers

t

re
se
ed
edseed

(file)

An Analysis of OpenSSL’s RNG Falko Strenzke 16 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



ELO160 / ELO80 in State reseeded

m
d
′′0

s0 s1 s3 s4 . . .

RAND bytes

b0 b1 r0 r1 . . .

SHA1 SHA1

RAND add

m
d
′0 SHA1

m
d
1

X
SHA1

m
d
2

. . .

1023 bytes state bytes

initial seed
H = 0 bits

dummy add
H = 0

“stirring operation” (prior to first output production with RAND bytes)

falsely seeded

H = 0 bitshigh entropy
seeding

reseeded

output production

160 bits

80 bits output
to attacker

80 bits
H = 0 bits

80 bits
of entropy

An Analysis of OpenSSL’s RNG Falko Strenzke 17 / 34



Attacks so far

ELO-240: purely cosmetic

ELO-160: not exploitable

ELO-80: only predict output from same call to RAND bytes

can we do better? ≈ 280 and more realistic conditions?

An Analysis of OpenSSL’s RNG Falko Strenzke 18 / 34



Attacks so far

ELO-240: purely cosmetic

ELO-160: not exploitable

ELO-80: only predict output from same call to RAND bytes

can we do better? ≈ 280 and more realistic conditions?

An Analysis of OpenSSL’s RNG Falko Strenzke 18 / 34



Attacks so far

ELO-240: purely cosmetic

ELO-160: not exploitable

ELO-80: only predict output from same call to RAND bytes

can we do better? ≈ 280 and more realistic conditions?

An Analysis of OpenSSL’s RNG Falko Strenzke 18 / 34



Attacks so far

ELO-240: purely cosmetic

ELO-160: not exploitable

ELO-80: only predict output from same call to RAND bytes

can we do better? ≈ 280 and more realistic conditions?

An Analysis of OpenSSL’s RNG Falko Strenzke 18 / 34



State Recovery Attacks

An Analysis of OpenSSL’s RNG Falko Strenzke 19 / 34



State Recovery Attack: DEJA-STATE

RNG in low entropy state

high entropy reseeding

in reseeded state

goal: recover RNG state after reseeding

H = 0

reseed
320 bits

RAND bytes

RAND bytes

attacker

An Analysis of OpenSSL’s RNG Falko Strenzke 20 / 34



State Recovery Attack: DEJA-STATE

RNG in low entropy state

high entropy reseeding

in reseeded state

goal: recover RNG state after reseeding

H = 0

reseed
320 bits

RAND bytes

RAND bytes

attacker

An Analysis of OpenSSL’s RNG Falko Strenzke 20 / 34



State Recovery Attack: DEJA-STATE

RNG in low entropy state

high entropy reseeding

in reseeded state

goal: recover RNG state after reseeding

H = 0

reseed
320 bits

RAND bytes

RAND bytes

attacker

An Analysis of OpenSSL’s RNG Falko Strenzke 20 / 34



State Recovery Attack: DEJA-STATE

RNG in low entropy state

high entropy reseeding

in reseeded state

goal: recover RNG state after reseeding

H = 0

reseed
320 bits

RAND bytes

RAND bytes

attacker

An Analysis of OpenSSL’s RNG Falko Strenzke 20 / 34



State Recovery Attack: DEJA-STATE

RNG in low entropy state

high entropy reseeding

in reseeded state

goal: recover RNG state after reseeding

H = 0

reseed
320 bits

RAND bytes

RAND bytes

attacker

An Analysis of OpenSSL’s RNG Falko Strenzke 20 / 34



State Recovery Attack: DEJA-STATE

s1 s2 . . .

r0 r1 . . .

m
d
0

unknown

SHA1

m
d
1

X
SHA1

m
d
2

. . .

guess other half –
280 possibilities

use for
matching

completely
known

H = 0

reseed
320 bits

RAND bytes

s4 s5 . . .

r3 r4 . . .

m
d
4 SHA1

m
d
5 SHA1

m
d
6

. . .

80 bits

iterate through
280 guesses

use for matching,
one collision
on average

. . .

An Analysis of OpenSSL’s RNG Falko Strenzke 21 / 34



State Recovery Attack: DEJA-STATE

s1 s2 . . .

r0 r1 . . .

m
d
0

unknown

SHA1

m
d
1

X
SHA1

m
d
2

. . .

guess other half –
280 possibilities

use for
matching

completely
known

H = 0

reseed
320 bits

RAND bytes

s4 s5 . . .

r3 r4 . . .

m
d
4 SHA1

m
d
5 SHA1

m
d
6

. . .

80 bits

iterate through
280 guesses

use for matching,
one collision
on average

. . .

An Analysis of OpenSSL’s RNG Falko Strenzke 21 / 34



State Recovery Attack: DEJA-STATE

s1 s2 . . .

r0 r1 . . .

m
d
0

unknown

SHA1

m
d
1

X
SHA1

m
d
2

. . .

guess other half –
280 possibilities

use for
matching

completely
known

H = 0

reseed
320 bits

RAND bytes

s4 s5 . . .

r3 r4 . . .

m
d
4 SHA1

m
d
5 SHA1

m
d
6

. . .

80 bits

iterate through
280 guesses

use for matching,
one collision
on average

. . .

An Analysis of OpenSSL’s RNG Falko Strenzke 21 / 34



State Recovery Attack: DEJA-STATE

s1 s2 . . .

r0 r1 . . .

m
d
0

unknown

SHA1

m
d
1

X
SHA1

m
d
2

. . .

guess other half –
280 possibilities

use for
matching

completely
known

H = 0

reseed
320 bits

RAND bytes

s4 s5 . . .

r3 r4 . . .

m
d
4 SHA1

m
d
5 SHA1

m
d
6

. . .

80 bits

iterate through
280 guesses

use for matching,
one collision
on average

. . .

An Analysis of OpenSSL’s RNG Falko Strenzke 21 / 34



State Recovery Attack: DEJA-STATE

s1 s2 . . .

r0 r1 . . .

m
d
0

unknown

SHA1

m
d
1

X
SHA1

m
d
2

. . .

guess other half –
280 possibilities

use for
matching

completely
known

H = 0

reseed
320 bits

RAND bytes

s4 s5 . . .

r3 r4 . . .

m
d
4 SHA1

m
d
5 SHA1

m
d
6

. . .

80 bits

iterate through
280 guesses

use for matching,
one collision
on average

. . .

An Analysis of OpenSSL’s RNG Falko Strenzke 21 / 34



State Recovery Attack: DEJA-STATE

s1 s2 . . .

r0 r1 . . .

m
d
0

unknown

SHA1

m
d
1

X
SHA1

m
d
2

. . .

guess other half –
280 possibilities

use for
matching

completely
known

H = 0

reseed
320 bits

RAND bytes

s4 s5 . . .

r3 r4 . . .

m
d
4 SHA1

m
d
5 SHA1

m
d
6

. . .

80 bits

iterate through
280 guesses

use for matching,
one collision
on average

. . .

An Analysis of OpenSSL’s RNG Falko Strenzke 21 / 34



State Recovery Attack: DEJA-STATE

s1 s2 . . .

r0 r1 . . .

m
d
0

unknown

SHA1

m
d
1

X
SHA1

m
d
2

. . .

guess other half –
280 possibilities

use for
matching

completely
known

H = 0

reseed
320 bits

RAND bytes

s4 s5 . . .

r3 r4 . . .

m
d
4 SHA1

m
d
5 SHA1

m
d
6

. . .

80 bits

iterate through
280 guesses

use for matching,
one collision
on average

. . .

An Analysis of OpenSSL’s RNG Falko Strenzke 21 / 34



State Recovery Attack: DEJA-STATE

s1 s2 . . .

r0 r1 . . .

m
d
0

unknown

SHA1

m
d
1

X
SHA1

m
d
2

. . .

guess other half –
280 possibilities

use for
matching

completely
known

H = 0

reseed
320 bits

RAND bytes

s4 s5 . . .

r3 r4 . . .

m
d
4 SHA1

m
d
5 SHA1

m
d
6

. . .

80 bits

iterate through
280 guesses

use for matching,
one collision
on average

. . .

An Analysis of OpenSSL’s RNG Falko Strenzke 21 / 34



State Recovery Attack: DEJA-STATE

s1 s2 . . .

r0 r1 . . .

m
d
0

unknown

SHA1

m
d
1

X
SHA1

m
d
2

. . .

guess other half –
280 possibilities

use for
matching

completely
known

H = 0

reseed
320 bits

RAND bytes

s4 s5 . . .

r3 r4 . . .

m
d
4 SHA1

m
d
5 SHA1

m
d
6

. . .

80 bits

iterate through
280 guesses

use for matching,
one collision
on average

. . .

An Analysis of OpenSSL’s RNG Falko Strenzke 21 / 34



State Recovery Attack: DEJA-STATE

state bytes recovered

now: recovery of md after the seeding

revisit the attacked seeding:

m
d
′′0

known prior
to reseeding

known from
attack

s ′0

s0

s ′1

s1

b0 b1

SHA1 SHA1

m
d
′0

md at end of
reseeding,

known from
difference

An Analysis of OpenSSL’s RNG Falko Strenzke 22 / 34



State Recovery Attack: DEJA-STATE

state bytes recovered

now: recovery of md after the seeding

revisit the attacked seeding:

m
d
′′0

known prior
to reseeding

known from
attack

s ′0

s0

s ′1

s1

b0 b1

SHA1 SHA1

m
d
′0

md at end of
reseeding,

known from
difference

An Analysis of OpenSSL’s RNG Falko Strenzke 22 / 34



State Recovery Attack: DEJA-STATE

state bytes recovered

now: recovery of md after the seeding

revisit the attacked seeding:

m
d
′′0

known prior
to reseeding

known from
attack

s ′0

s0

s ′1

s1

b0 b1

SHA1 SHA1

m
d
′0

md at end of
reseeding,

known from
difference

An Analysis of OpenSSL’s RNG Falko Strenzke 22 / 34



State Recovery Attack: DEJA-STATE

state bytes recovered

now: recovery of md after the seeding

revisit the attacked seeding:

m
d
′′0

known prior
to reseeding

known from
attack

s ′0

s0

s ′1

s1

b0 b1

SHA1 SHA1

m
d
′0

md at end of
reseeding,

known from
difference

An Analysis of OpenSSL’s RNG Falko Strenzke 22 / 34



State Recovery Attack: DEJA-STATE

state bytes recovered

now: recovery of md after the seeding

revisit the attacked seeding:

m
d
′′0

known prior
to reseeding

known from
attack

s ′0

s0

s ′1

s1

b0 b1

SHA1 SHA1

m
d
′0

md at end of
reseeding,

known from
difference

An Analysis of OpenSSL’s RNG Falko Strenzke 22 / 34



State Recovery Attack: DEJA-STATE

state bytes recovered

now: recovery of md after the seeding

revisit the attacked seeding:

m
d
′′0

known prior
to reseeding

known from
attack

s ′0

s0

s ′1

s1

b0 b1

SHA1 SHA1

m
d
′0

md at end of
reseeding,

known from
difference

An Analysis of OpenSSL’s RNG Falko Strenzke 22 / 34



State Recovery Attack: DEJA-STATE

state bytes recovered

now: recovery of md after the seeding

revisit the attacked seeding:

m
d
′′0

known prior
to reseeding

known from
attack

s ′0

s0

s ′1

s1

b0 b1

SHA1 SHA1

m
d
′0

md at end of
reseeding,

known from
difference

An Analysis of OpenSSL’s RNG Falko Strenzke 22 / 34



State Recovery Attack: DEJA-STATE

state bytes recovered

now: recovery of md after the seeding

revisit the attacked seeding:

m
d
′′0

known prior
to reseeding

known from
attack

s ′0

s0

s ′1

s1

b0 b1

SHA1 SHA1

m
d
′0

md at end of
reseeding,

known from
difference

An Analysis of OpenSSL’s RNG Falko Strenzke 22 / 34



Dealing with Non-Zero Initial Entropy

Strategies to deal with non-zero initial entropy

determine state prior to seeding from output

determine additional entropy during the recovery of md

computational effort 280+x

An Analysis of OpenSSL’s RNG Falko Strenzke 23 / 34



Dealing with Non-Zero Initial Entropy

Strategies to deal with non-zero initial entropy

determine state prior to seeding from output

determine additional entropy during the recovery of md

computational effort 280+x

An Analysis of OpenSSL’s RNG Falko Strenzke 23 / 34



Dealing with Non-Zero Initial Entropy

Strategies to deal with non-zero initial entropy

determine state prior to seeding from output

determine additional entropy during the recovery of md

computational effort 280+x

An Analysis of OpenSSL’s RNG Falko Strenzke 23 / 34



State Recovery Attack: DEJA-STATE

state after reseeding completely recovered

condition: attacker receives longer portion of output at
specific offset after reseeding

effort for a 320-bit seed: 284 hash evaluations

(some tens of bytes in each hash invocation)

also possible for seed not a multiple of 80 bits

280 considered “light-weight security”

≈ RSA-1024
PRESENT light-weight block cipher for RFID applications
must be feared to be breakable within a decade (?)
will incur considerable costs for a long time

An Analysis of OpenSSL’s RNG Falko Strenzke 24 / 34



State Recovery Attack: DEJA-STATE

state after reseeding completely recovered

condition: attacker receives longer portion of output at
specific offset after reseeding

effort for a 320-bit seed: 284 hash evaluations

(some tens of bytes in each hash invocation)

also possible for seed not a multiple of 80 bits

280 considered “light-weight security”

≈ RSA-1024
PRESENT light-weight block cipher for RFID applications
must be feared to be breakable within a decade (?)
will incur considerable costs for a long time

An Analysis of OpenSSL’s RNG Falko Strenzke 24 / 34



State Recovery Attack: DEJA-STATE

state after reseeding completely recovered

condition: attacker receives longer portion of output at
specific offset after reseeding

effort for a 320-bit seed: 284 hash evaluations

(some tens of bytes in each hash invocation)

also possible for seed not a multiple of 80 bits

280 considered “light-weight security”

≈ RSA-1024
PRESENT light-weight block cipher for RFID applications
must be feared to be breakable within a decade (?)
will incur considerable costs for a long time

An Analysis of OpenSSL’s RNG Falko Strenzke 24 / 34



State Recovery Attack: DEJA-STATE

state after reseeding completely recovered

condition: attacker receives longer portion of output at
specific offset after reseeding

effort for a 320-bit seed: 284 hash evaluations

(some tens of bytes in each hash invocation)

also possible for seed not a multiple of 80 bits

280 considered “light-weight security”

≈ RSA-1024
PRESENT light-weight block cipher for RFID applications
must be feared to be breakable within a decade (?)
will incur considerable costs for a long time

An Analysis of OpenSSL’s RNG Falko Strenzke 24 / 34



State Recovery Attack: DEJA-STATE

state after reseeding completely recovered

condition: attacker receives longer portion of output at
specific offset after reseeding

effort for a 320-bit seed: 284 hash evaluations

(some tens of bytes in each hash invocation)

also possible for seed not a multiple of 80 bits

280 considered “light-weight security”

≈ RSA-1024
PRESENT light-weight block cipher for RFID applications
must be feared to be breakable within a decade (?)
will incur considerable costs for a long time

An Analysis of OpenSSL’s RNG Falko Strenzke 24 / 34



State Recovery Attack: DEJA-STATE

state after reseeding completely recovered

condition: attacker receives longer portion of output at
specific offset after reseeding

effort for a 320-bit seed: 284 hash evaluations

(some tens of bytes in each hash invocation)

also possible for seed not a multiple of 80 bits

280 considered “light-weight security”

≈ RSA-1024
PRESENT light-weight block cipher for RFID applications
must be feared to be breakable within a decade (?)
will incur considerable costs for a long time

An Analysis of OpenSSL’s RNG Falko Strenzke 24 / 34



State Recovery Attack: DEJA-STATE

state after reseeding completely recovered

condition: attacker receives longer portion of output at
specific offset after reseeding

effort for a 320-bit seed: 284 hash evaluations

(some tens of bytes in each hash invocation)

also possible for seed not a multiple of 80 bits

280 considered “light-weight security”

≈ RSA-1024
PRESENT light-weight block cipher for RFID applications
must be feared to be breakable within a decade (?)
will incur considerable costs for a long time

An Analysis of OpenSSL’s RNG Falko Strenzke 24 / 34



State Recovery Attack: DEJA-STATE

state after reseeding completely recovered

condition: attacker receives longer portion of output at
specific offset after reseeding

effort for a 320-bit seed: 284 hash evaluations

(some tens of bytes in each hash invocation)

also possible for seed not a multiple of 80 bits

280 considered “light-weight security”

≈ RSA-1024
PRESENT light-weight block cipher for RFID applications
must be feared to be breakable within a decade (?)
will incur considerable costs for a long time

An Analysis of OpenSSL’s RNG Falko Strenzke 24 / 34



State Recovery Attack: DEJA-STATE

state after reseeding completely recovered

condition: attacker receives longer portion of output at
specific offset after reseeding

effort for a 320-bit seed: 284 hash evaluations

(some tens of bytes in each hash invocation)

also possible for seed not a multiple of 80 bits

280 considered “light-weight security”

≈ RSA-1024
PRESENT light-weight block cipher for RFID applications
must be feared to be breakable within a decade (?)
will incur considerable costs for a long time

An Analysis of OpenSSL’s RNG Falko Strenzke 24 / 34



State Recovery Attack: DEJA-STATE

state after reseeding completely recovered

condition: attacker receives longer portion of output at
specific offset after reseeding

effort for a 320-bit seed: 284 hash evaluations

(some tens of bytes in each hash invocation)

also possible for seed not a multiple of 80 bits

280 considered “light-weight security”

≈ RSA-1024
PRESENT light-weight block cipher for RFID applications
must be feared to be breakable within a decade (?)
will incur considerable costs for a long time

An Analysis of OpenSSL’s RNG Falko Strenzke 24 / 34



State Recovery Attack: DEJA-SEED

similar attack, recover also the seed

m
d
′′0

s0 s1

b0, 160 bits b1, 80 bits

const/
known

80 bits
entropy

SHA1 SHA1

m
d
′0

synching to md like in DEJA-STATE

then iterate through the possible seed values

An Analysis of OpenSSL’s RNG Falko Strenzke 25 / 34



State Recovery Attack: DEJA-SEED

similar attack, recover also the seed

m
d
′′0

s0 s1

b0, 160 bits b1, 80 bits

const/
known

80 bits
entropy

SHA1 SHA1

m
d
′0

synching to md like in DEJA-STATE

then iterate through the possible seed values

An Analysis of OpenSSL’s RNG Falko Strenzke 25 / 34



State Recovery Attack: DEJA-SEED

similar attack, recover also the seed

m
d
′′0

s0 s1

b0, 160 bits b1, 80 bits

const/
known

80 bits
entropy

SHA1 SHA1

m
d
′0

synching to md like in DEJA-STATE

then iterate through the possible seed values

An Analysis of OpenSSL’s RNG Falko Strenzke 25 / 34



Forward Security of Seed Data

An Analysis of OpenSSL’s RNG Falko Strenzke 26 / 34



Forward Security of Seed Data

forward security of seed data not a recognized notion

OpenSSL’s RNG: even high entropy seed data potentially
recoverable

block-wise hashing in RAND add is a mistake

correct: hashing state together with new input

always inefficient for large RNG states

An Analysis of OpenSSL’s RNG Falko Strenzke 27 / 34



Forward Security of Seed Data

forward security of seed data not a recognized notion

OpenSSL’s RNG: even high entropy seed data potentially
recoverable

block-wise hashing in RAND add is a mistake

correct: hashing state together with new input

always inefficient for large RNG states

An Analysis of OpenSSL’s RNG Falko Strenzke 27 / 34



Forward Security of Seed Data

forward security of seed data not a recognized notion

OpenSSL’s RNG: even high entropy seed data potentially
recoverable

block-wise hashing in RAND add is a mistake

correct: hashing state together with new input

always inefficient for large RNG states

An Analysis of OpenSSL’s RNG Falko Strenzke 27 / 34



Forward Security of Seed Data

forward security of seed data not a recognized notion

OpenSSL’s RNG: even high entropy seed data potentially
recoverable

block-wise hashing in RAND add is a mistake

correct: hashing state together with new input

always inefficient for large RNG states

An Analysis of OpenSSL’s RNG Falko Strenzke 27 / 34



Forward Security of Seed Data

forward security of seed data not a recognized notion

OpenSSL’s RNG: even high entropy seed data potentially
recoverable

block-wise hashing in RAND add is a mistake

correct: hashing state together with new input

always inefficient for large RNG states

An Analysis of OpenSSL’s RNG Falko Strenzke 27 / 34



Theoretical Considerations

An Analysis of OpenSSL’s RNG Falko Strenzke 28 / 34



Notion of Mixing Function

H(f (I ,S)) ≥ H(S) and H(f (I , S) ≥ H(I )

input I , state S

RAND add fulfills this notion formally

but not effectively

only useful if whole state is used in output production in a
symmetric way

need definition which considers entropy of subsequent
output instead of that of the state

An Analysis of OpenSSL’s RNG Falko Strenzke 29 / 34



Notion of Mixing Function

H(f (I ,S)) ≥ H(S) and H(f (I , S) ≥ H(I )

input I , state S

RAND add fulfills this notion formally

but not effectively

only useful if whole state is used in output production in a
symmetric way

need definition which considers entropy of subsequent
output instead of that of the state

An Analysis of OpenSSL’s RNG Falko Strenzke 29 / 34



Notion of Mixing Function

H(f (I ,S)) ≥ H(S) and H(f (I , S) ≥ H(I )

input I , state S

RAND add fulfills this notion formally

but not effectively

only useful if whole state is used in output production in a
symmetric way

need definition which considers entropy of subsequent
output instead of that of the state

An Analysis of OpenSSL’s RNG Falko Strenzke 29 / 34



Notion of Mixing Function

H(f (I ,S)) ≥ H(S) and H(f (I , S) ≥ H(I )

input I , state S

RAND add fulfills this notion formally

but not effectively

only useful if whole state is used in output production in a
symmetric way

need definition which considers entropy of subsequent
output instead of that of the state

An Analysis of OpenSSL’s RNG Falko Strenzke 29 / 34



Notion of Mixing Function

H(f (I ,S)) ≥ H(S) and H(f (I , S) ≥ H(I )

input I , state S

RAND add fulfills this notion formally

but not effectively

only useful if whole state is used in output production in a
symmetric way

need definition which considers entropy of subsequent
output instead of that of the state

An Analysis of OpenSSL’s RNG Falko Strenzke 29 / 34



Formal Vulnerabilities of OpenSSL’s RNG

impaired forward security

t

reseeding output
DEJA-SEED, DEJA-STATE,

or state compromise
recover

backward security not attempted by RNG itself

but when attempted by application, suffers from our attacks

t

state compromise reseeding output DEJA-SEED, DEJA-STATE
recover

new notion: forward security of seed data

not achieved by OpenSSL’s RNG

An Analysis of OpenSSL’s RNG Falko Strenzke 30 / 34



Formal Vulnerabilities of OpenSSL’s RNG

impaired forward security

t

reseeding output
DEJA-SEED, DEJA-STATE,

or state compromise
recover

backward security not attempted by RNG itself

but when attempted by application, suffers from our attacks

t

state compromise reseeding output DEJA-SEED, DEJA-STATE
recover

new notion: forward security of seed data

not achieved by OpenSSL’s RNG

An Analysis of OpenSSL’s RNG Falko Strenzke 30 / 34



Formal Vulnerabilities of OpenSSL’s RNG

impaired forward security

t

reseeding output
DEJA-SEED, DEJA-STATE,

or state compromise
recover

backward security not attempted by RNG itself

but when attempted by application, suffers from our attacks

t

state compromise reseeding output DEJA-SEED, DEJA-STATE
recover

new notion: forward security of seed data

not achieved by OpenSSL’s RNG

An Analysis of OpenSSL’s RNG Falko Strenzke 30 / 34



Formal Vulnerabilities of OpenSSL’s RNG

impaired forward security

t

reseeding output
DEJA-SEED, DEJA-STATE,

or state compromise
recover

backward security not attempted by RNG itself

but when attempted by application, suffers from our attacks

t

state compromise reseeding output DEJA-SEED, DEJA-STATE
recover

new notion: forward security of seed data

not achieved by OpenSSL’s RNG

An Analysis of OpenSSL’s RNG Falko Strenzke 30 / 34



Formal Vulnerabilities of OpenSSL’s RNG

impaired forward security

t

reseeding output
DEJA-SEED, DEJA-STATE,

or state compromise
recover

backward security not attempted by RNG itself

but when attempted by application, suffers from our attacks

t

state compromise reseeding output DEJA-SEED, DEJA-STATE
recover

new notion: forward security of seed data

not achieved by OpenSSL’s RNG

An Analysis of OpenSSL’s RNG Falko Strenzke 30 / 34



Formal Vulnerabilities of OpenSSL’s RNG

impaired forward security

t

reseeding output
DEJA-SEED, DEJA-STATE,

or state compromise
recover

backward security not attempted by RNG itself

but when attempted by application, suffers from our attacks

t

state compromise reseeding output DEJA-SEED, DEJA-STATE
recover

new notion: forward security of seed data

not achieved by OpenSSL’s RNG

An Analysis of OpenSSL’s RNG Falko Strenzke 30 / 34



Formal Vulnerabilities of OpenSSL’s RNG

impaired forward security

t

reseeding output
DEJA-SEED, DEJA-STATE,

or state compromise
recover

backward security not attempted by RNG itself

but when attempted by application, suffers from our attacks

t

state compromise reseeding output DEJA-SEED, DEJA-STATE
recover

new notion: forward security of seed data

not achieved by OpenSSL’s RNG

An Analysis of OpenSSL’s RNG Falko Strenzke 30 / 34



Repairing OpenSSL’s RNG

An Analysis of OpenSSL’s RNG Falko Strenzke 31 / 34



Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL’s RNG Falko Strenzke 32 / 34



Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL’s RNG Falko Strenzke 32 / 34



Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL’s RNG Falko Strenzke 32 / 34



Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL’s RNG Falko Strenzke 32 / 34



Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL’s RNG Falko Strenzke 32 / 34



Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL’s RNG Falko Strenzke 32 / 34



Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL’s RNG Falko Strenzke 32 / 34



Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL’s RNG Falko Strenzke 32 / 34



Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL’s RNG Falko Strenzke 32 / 34



Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL’s RNG Falko Strenzke 32 / 34



Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL’s RNG Falko Strenzke 32 / 34



Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL’s RNG Falko Strenzke 32 / 34



Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse

An Analysis of OpenSSL’s RNG Falko Strenzke 32 / 34



Conclusion

multiple design errors in OpenSSL’s RNG

LESLI
ELO240,ELO160,ELO80
DEJA-STATE, DEJA-SEED

effort around 280 hash evaluations

impact

attacks highly application specific
relevant for embedded systems

theoretic insights

applicability of the notion of mixing function
forward security of seed data

repairs suggested

An Analysis of OpenSSL’s RNG Falko Strenzke 33 / 34



Conclusion

multiple design errors in OpenSSL’s RNG

LESLI
ELO240,ELO160,ELO80
DEJA-STATE, DEJA-SEED

effort around 280 hash evaluations

impact

attacks highly application specific
relevant for embedded systems

theoretic insights

applicability of the notion of mixing function
forward security of seed data

repairs suggested

An Analysis of OpenSSL’s RNG Falko Strenzke 33 / 34



Conclusion

multiple design errors in OpenSSL’s RNG

LESLI
ELO240,ELO160,ELO80
DEJA-STATE, DEJA-SEED

effort around 280 hash evaluations

impact

attacks highly application specific
relevant for embedded systems

theoretic insights

applicability of the notion of mixing function
forward security of seed data

repairs suggested

An Analysis of OpenSSL’s RNG Falko Strenzke 33 / 34



Conclusion

multiple design errors in OpenSSL’s RNG

LESLI
ELO240,ELO160,ELO80
DEJA-STATE, DEJA-SEED

effort around 280 hash evaluations

impact

attacks highly application specific
relevant for embedded systems

theoretic insights

applicability of the notion of mixing function
forward security of seed data

repairs suggested

An Analysis of OpenSSL’s RNG Falko Strenzke 33 / 34



Conclusion

multiple design errors in OpenSSL’s RNG

LESLI
ELO240,ELO160,ELO80
DEJA-STATE, DEJA-SEED

effort around 280 hash evaluations

impact

attacks highly application specific
relevant for embedded systems

theoretic insights

applicability of the notion of mixing function
forward security of seed data

repairs suggested

An Analysis of OpenSSL’s RNG Falko Strenzke 33 / 34



Conclusion

multiple design errors in OpenSSL’s RNG

LESLI
ELO240,ELO160,ELO80
DEJA-STATE, DEJA-SEED

effort around 280 hash evaluations

impact

attacks highly application specific
relevant for embedded systems

theoretic insights

applicability of the notion of mixing function
forward security of seed data

repairs suggested

An Analysis of OpenSSL’s RNG Falko Strenzke 33 / 34



Conclusion

multiple design errors in OpenSSL’s RNG

LESLI
ELO240,ELO160,ELO80
DEJA-STATE, DEJA-SEED

effort around 280 hash evaluations

impact

attacks highly application specific
relevant for embedded systems

theoretic insights

applicability of the notion of mixing function
forward security of seed data

repairs suggested

An Analysis of OpenSSL’s RNG Falko Strenzke 33 / 34



Conclusion

multiple design errors in OpenSSL’s RNG

LESLI
ELO240,ELO160,ELO80
DEJA-STATE, DEJA-SEED

effort around 280 hash evaluations

impact

attacks highly application specific
relevant for embedded systems

theoretic insights

applicability of the notion of mixing function
forward security of seed data

repairs suggested

An Analysis of OpenSSL’s RNG Falko Strenzke 33 / 34



Conclusion

multiple design errors in OpenSSL’s RNG

LESLI
ELO240,ELO160,ELO80
DEJA-STATE, DEJA-SEED

effort around 280 hash evaluations

impact

attacks highly application specific
relevant for embedded systems

theoretic insights

applicability of the notion of mixing function
forward security of seed data

repairs suggested

An Analysis of OpenSSL’s RNG Falko Strenzke 33 / 34



Conclusion

multiple design errors in OpenSSL’s RNG

LESLI
ELO240,ELO160,ELO80
DEJA-STATE, DEJA-SEED

effort around 280 hash evaluations

impact

attacks highly application specific
relevant for embedded systems

theoretic insights

applicability of the notion of mixing function
forward security of seed data

repairs suggested

An Analysis of OpenSSL’s RNG Falko Strenzke 33 / 34



Conclusion

multiple design errors in OpenSSL’s RNG

LESLI
ELO240,ELO160,ELO80
DEJA-STATE, DEJA-SEED

effort around 280 hash evaluations

impact

attacks highly application specific
relevant for embedded systems

theoretic insights

applicability of the notion of mixing function
forward security of seed data

repairs suggested

An Analysis of OpenSSL’s RNG Falko Strenzke 33 / 34



Conclusion

multiple design errors in OpenSSL’s RNG

LESLI
ELO240,ELO160,ELO80
DEJA-STATE, DEJA-SEED

effort around 280 hash evaluations

impact

attacks highly application specific
relevant for embedded systems

theoretic insights

applicability of the notion of mixing function
forward security of seed data

repairs suggested

An Analysis of OpenSSL’s RNG Falko Strenzke 33 / 34



Thank you!

An Analysis of OpenSSL’s RNG Falko Strenzke 34 / 34


	Low Entropy Secret Leakage
	Core Cryptographic Function of OpenSSL's RNG
	Output Entropy Limitation Vulnerabilities
	State Recovery Attacks
	Forward Security of Seed Data
	Theoretical Considerations
	Repairing OpenSSL's RNG

